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1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, 

СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ 

ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 

 

Вид деятельности выпускника 

Дисциплина охватывает круг вопросов, относящихся к производственно-

технологическому и экспериментально-исследовательскому видам профессиональной 

деятельности выпускника в соответствии с компетенциями и видами деятельности, 

указанными в учебном плане. 

Цель дисциплины  

Дать обучающемуся необходимый объем фундаментальных знаний в области 

механического взаимодействия равновесия и движения материальных тел, на базе которых 

строится большинство специальных дисциплин инженерно-технического образования. 

Задачи дисциплины 

Задачей изучения дисциплины является формирование у обучающегося системы 

инженерно-конструкторских знаний, позволяющих успешно решать научно-технические 

проблемы, возникающие в процессе профессиональной деятельности. 

Код 

компетенции 
Содержание  

компетенций 

Перечень планируемых результатов 

обучения по дисциплине 
1 2 3 

ОПК-3 Готовность применять 

систему 

фундаментальных знаний 

(математических, 

естественнонаучных, 

инженерных и 

экономических) для 

идентификации 

формулирования и 

решения технических и 

технологических проблем 

эксплуатации 

транспортно-

технологических машин и 

комплексов. 

знать: 
- основные подходы к формализации и 

моделированию движения и равновесия 

материальных тел; постановку и методы 

решения задач о движении и равновесии 

механических систем; 

уметь: 

- применять знания, полученные по 

теоретической механике при изучении 

дисциплин профессионального цикла; 

владеть: 

- основными современными методами 

постановки, исследования и решения задач 

механики. 

 

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 

 

Дисциплина  Б1.Б.14  Теоретическая механика относится к базовой части.  

Дисциплина Теоретическая механика базируется на знаниях, полученных при изучении 

учебных дисциплин: математика, физика, информационные технологии. 

Основываясь на изучении вышеперечисленных дисциплин, теоретическая механика 

представляет основу для изучения дисциплин: сопротивление материалов, детали машин, 

теория машин и механизмов.
 

Такое системное междисциплинарное изучение направлено на достижение требуемого 

ФГОС уровня подготовки по квалификации бакалавр. 
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3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ 

3.1. Распределение объема дисциплины по формам обучения 

Форма 

обучения 

К
ур

с 

С
ем

ес
т

р
 

Трудоемкость дисциплины в часах 

Курсовая 

работа 

(проект), 

контрольная 

работа, 

реферат, 

РГР 

Вид  

промежуточно

й аттестации 

В
се

го
 ч

а
со

в 
(с

 э
к

з.
) 

А
уд

и
т

о
р

н
ы

х
 ч

а
со

в 

Л
ек

ц
и

и
  

Л
а

б
о

р
а
т

о
р

н
ы

е 

р
а

б
о

т
ы

 

П
р

а
к

т
и

ч
ес

к
и

е 

за
н

я
т

и
я

  

С
а

м
о

ст
о

я
т

ел
ь
н

а
я

 

р
а

б
о

т
а
 

1 2 3 4 5 6 7 8 9 10 11 

Очная - - - - - - - - - - 

Заочная 1 - 144 12 6 - 6 123 - экзамен 

Заочная 

(ускоренное 

обучение) 

- - - - - - - - - - 

Очно-заочная - - - - - - - - - - 

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости 

 

Вид учебных занятий 

Трудо-

емкость 

(час.) 

в т.ч. в 

интерактивной, 

актив-ной, 

иннова- 

циионной 

формах, 

(час.) 

Распре-

деление  

по 

курсам, 

час 

1 

1 2 3 4 

I. Контактная работа обучающихся с 

преподавателем (всего) 12 4 12 

Лекции (Лк) 6 4 6 

Практические занятия (ПЗ) 6 - 6 

Групповые (индивидуальные) консультации + - + 

II.Самостоятельная работа обучающихся 

(СР) 
123 - 123 

Подготовка к практическим занятиям  60 - 60 

Подготовка к экзамену  63 - 63 

III. Промежуточная аттестация         экзамен 9 - 9 

Общая трудоемкость дисциплины        час. 

зач. ед. 
144 - 144 

4 - 4 
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4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 

4.1. Распределение разделов дисциплины по видам учебных занятий 

- для заочной формы обучения: 

№ 

раз-

дела и 

темы 

Наименование 

раздела и  

темы дисциплины 

Трудоем-

кость, 

(час.) 

Виды учебных занятий, 

включая самостоятельную 

работу обучающихся и 

трудоемкость; (час.) 

учебные занятия 
самостоя-

тельная 

работа 

обучаю-

щихся* 

лекции 

прак-

ти-

ческие  

заня-

тия 
1 2 3 4 5 6 

1. Статика 32 1 1 30 

1.1. 

 

 

 

 

Свободные и несвободные 

тела. Связи и их реакции.  

Момент силы относительно 

точки и оси. Главный вектор и 

главный момент системы сил.  

16 0,5 0,5 15 

1.2. 

 

 

 

Условия и уравнения 

равновесия систем сил. Пара 

сил. Система сочлененных тел. 

Расчет ферм. 

Центр параллельных сил. 

Центр тяжести тела. Методы 

определения положения центра 

тяжести. 

16 0,5 0,5 15 

2. Кинематика 35 1 2 32 

2.1. 

 

 

 

 

 

 

 

Кинематика точки. Скорость и 

ускорение точки при 

координатном и естественном 

способах задания движения. 

Поступательное и 

вращательное движения 

твердого тела, уравнения 

движения, скорость и 

ускорение точек тела. 

 

17,5 0,5 1 16 

2.2. 

 

 

 

 

 

 

 

Сложное движение точки: 

абсолютное, относительное и 

переносное движения точки, 

теорема о сложении скоростей 

и ускорений точки, ускорение 

Кориолиса. 

Плоскопараллельное движение 

твердого тела: уравнения 

движения, мгновенный центр 

скоростей (м.ц.с.) и 

определение скоростей точек 

тела по м.ц.с. 

 

 

17,5 0,5 1 16 
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3. Динамика: 68 4 3 61 

3.1. 

 

 

 

 

 

 

 

Динамика материальной точки, 

две основные задачи динамики 

материальной точки. 

Механическая система, 

внешние и внутренние силы, 

свойства внутренних сил, 

момент инерции, радиус 

инерции, теорема о моментах 

инерции относительно 

параллельных осей. 

17 1 1 15 

3.2. 

 

 

 

 

Общие теоремы динамики: 

количество движения, теорема 

об изменении количества 

движения. 

Общие теоремы динамики: 

кинетический момент, теорема 

об изменении кинетического 

момента.  

16,5 1 0,5 15 

3.3. 

 
Работа силы и момента силы, 

мощность. 

Теорема об изменении 

кинетической энергии. 

16,5 1 0,5 15 

3.4. 

 

 

Принципы механики: принцип 

Даламбера для материальной 

точки (метод кинетостатики). 

Сила инерции, возможные 

перемещения, возможная 

работа. 

18 1 1 16 

 ИТОГО 135 6 6 123 

 

 

4.2. Содержание дисциплины, структурированное по разделам и темам 

 

Алгоритм проведения интерактивного занятия в форме лекции – визуализации: 

 

1. Подготовка занятия 

Слайд-презентацию лекции по теме занятия согласно учебного плана подготавливает 

преподаватель. 

2. Вступление (мотивация бакалавра на новую форму освоения материала). 

Излагается тема, план и цель лекции. Поясняется, что реализуемый в дальнейшем на занятии 

принцип наглядности компенсирует недостаточную зрелищность учебного процесса. Для 

создания предпосылки мотивации обучающихся приводится интересный факт, 

иллюстрируемый средствами мультимедиа, или задаётся мотивирующий вопрос. При этом 

один из их ожидаемых ответов на него демонстрируется в форме видеоряда. 

3. Основная часть (формулировка и изложение вопросов). 

В начале изучения каждого вопроса производится его визуализация на опорных слайдах 

презентации, а в процессе его изложения используются различные формы наглядности: 

натуральные, изобразительные или символические. При этом допускаются паузы в изложении 

для того, чтобы обучающиеся успевали законспектировать воспринятую визуально 

информацию – и не механически, а осмысленно, а также, чтобы они имели возможность 

кратковременной разрядки по истечении пиков внимания. В ходе лекции используются 

реплики: «это следует записать буквально или изобразить подробно», «сейчас можно просто 
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послушать или пронаблюдать». Повторами и более медленным темпом выделяется наиболее 

важная информация, проводится контроль за её фиксацией.  

4. Заключение 

Напоминание темы и цели занятия, основных позиций лекции с применением опорных 

слайдов презентации. Подведение итогов в виде фронтальной беседы и ответов на ключевые 

вопросы темы. 

 

Раздел 1. СТАТИКА 

 

Тема 1.1. Свободные и несвободные тела. Связи и их реакции 

Момент силы относительно точки и оси. 

Главный вектор и главный момент системы сил.  

(Лекция-визуализация 0,5 часа) 

 

Статикой называется раздел механики, в котором излагается общее учение о силах и 

изучается условия равновесия материальных тел, находящихся под действием сил. 

Твердое тело. В статике и вообще в теоретической механике все тела считаются 

абсолютно твердыми. То есть предполагается, что эти тела не деформируются, не изменяют 

свою форму и объем, какое бы действие на них не было оказано. 

Исследованием движения нетвердых тел – упругих, пластичных, жидких, 

газообразных, занимаются другие науки (сопротивление материалов, теория упругости, 

гидродинамика и т.д.). 

Под равновесием будем понимать состояния покоя тела по отношению к другим 

материальным телам. 

Основные понятия: 

1. Величина, являющаяся количественной мерой механического взаимодействия 

материальных тел, называется в механике силой. 

Сила является величиной векторной.  

Ее действие на тело определяется: 1) численной величиной или модулем силы, 2) 

направлением силы, 3) точкой приложения силы (рис. 1.1). 

 
Рис. 1.1 

 

Прямая DE, вдоль которой направлена сила, называется линией действия силы. 

В тексте вектор силы обозначается латинскими буквами F


, R


, P


 и др., с черточками 

над ними. Если черточки нет, значит у силы известна только ее численная величина - модуль. 

Предполагается, что действие силы на тело не изменится, если ее перенести по линии 

действия в любую точку тела (конечно – твердого тела). Поэтому вектор силы называют 

скользящим вектором. Если силу перенести в точку, не расположенную на этой линии, 

действие ее на тело будет совсем другим. 

2. Совокупность сил, действующих на какое-нибудь твердое тело, будем называть 

системой сил. 

3. Тело, не скрепленное с другими телами, которому из данного положения можно 

сообщить любое перемещение в пространстве, называется свободным. 

4. Если одну систему сил, действующих на свободное твердое тело, можно заменить 

другой системой, не изменяя при этом состояния покоя или движения, в котором находится 

тело, то такие две системы сил называются эквивалентными.  
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5. Система сил, под действием которой свободное твердое тело может находиться в 

покое, называется уравновешенной или эквивалентной нулю. 

6. Если данная система сил эквивалентна одной силе, то эта сила называется 

равнодействующей данной системы сил. Таким образом, равнодействующая - это сила, 

которая одна заменяет действие данной системы сил на твердое тело.  

7. Сила, равная равнодействующей по модулю, прямо противоположная ей по 

направлению и действующая вдоль той же прямой, называется уравновешивающей силой. 

8. Силы, действующие на твердое тело, можно разделить на внешние и внутренние. 

Внешними называются силы, действующие на частицы данного тела со стороны других 

материальных тел. Внутренними называются силы, с которыми частицы данного тела 

действуют друг на друга. 

9. Сила, приложенная к телу в какой-нибудь одной его точке, называется 

сосредоточенной. Силы, действующие на все точки данного объема или данной части 

поверхности тела, называются распределенными. 

Понятие о сосредоточенной силе является условным, так как практически приложить 

силу к телу в одной точке нельзя. Силы, которые мы в механике рассматриваем как 

сосредоточенные, представляют собою по существу равнодействующие некоторых систем 

распределенных сил. 

В частности, обычно рассматриваемая в механике сила тяжести, действующая на 

данное твердое тело, представляет собою равнодействующую сил тяжести его частиц. Линия 

действия этой равнодействующей проходит через точку, называемую центром тяжести тела. 

 

Аксиомы статики 

Все теоремы и уравнения статики выводятся из нескольких исходных положений, 

принимаемых без математических доказательств и называемых аксиомами или принципами 

статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов 

и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. 

Часть из этих аксиом является следствиями основных законов механики, с которыми мы 

познакомимся в динамике. 

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело 

может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F1 = 

F2) и направлены вдоль одной прямой в противоположные стороны (рис. 1.2). 

 
Рис. 1.2 

 

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт 

показывает, что свободное тело, на которое действует только одна сила, находиться в 

равновесии не может. 
Аксиома 2. Действие данной системы, сил на абсолютно твердое тело не изменится, 

если к ней прибавить или от нее отнять уравновешенную систему сил. 
Эта аксиома устанавливает, что две системы сил, отличающиеся на уравновешенную 

систему, эквивалентны друг другу. 

Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, 

если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела. 
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Рис. 1.3 

 

В самом деле, пусть на твердое тело действует приложенная в точке А сила F


 (рис. 

1.3). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две 

уравновешенные силы 
1F


 и 
2F


, такие, что 
1F


 = F


, 
2F


= F


 . От этого действие силы F


 на 

тело не изменится. Но силы F


 и 2F


 согласно аксиоме 1 также образуют уравновешенную 

систему, которая может быть отброшена. В результате на тело. Будет действовать только одна 

сила 1F


, равная F


, но приложенная в точке В.   

Таким образом, вектор, изображающий силу F


, можно считать приложенным в любой 

точке на линии действия силы (такой вектор называется скользящим). 

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной 

точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю 

параллелограмма, построенного на этих силах, как на сторонах. 

Вектор R


, равный диагонали параллелограмма, построенного на векторах 1F


 и 2F


 (рис. 

1.4), называется геометрической суммой векторов 1F


 и 2F


:   R


= 1F


 + 2F


. 

 
Рис. 1.4 

 
Величина равнодействующей 

.cos2 21
2

2
2

1 FFFFR    

Конечно, .21 FFR   Такое равенство будет соблюдаться только при условии, что эти 

силы направлены по одной прямой в одну сторону. Если же векторы сил окажутся 

перпендикулярными, то .2
2

2
1 FFR   

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к 

телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме 

этих сил и приложенную в той же точке.  

Аксиома 4. При всяком действии одного материального тела на другое имеет место 

такое же по величине, но противоположное по направлению противодействие. 

Закон о равенстве действия и противодействия является одним из основных законов 

механики. Из него следует, что если тело А действует на тело В с силой F


, то одновременно 

тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но 

противоположную сторону силой 'F


= F


 (рис. 1.5). Однако силы F


 и 'F


не образуют урав-

новешенной системы сил, так как они приложены к разным телам. 
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Рис. 1.5 

  

Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, 

находящегося под действием данной системы сил, не нарушится, если тело считать 

отвердевшим (абсолютно твердым). 

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие 

цепи не нарушится, если ее звенья считать сваренными друг с другом и т.д. 

 

Связи и их реакции 

 

По определению, тело, которое не скреплено с другими телами и может совершать из 

данного положения любые перемещения в пространстве, называется свободным (например, 

воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют 

какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется 

несвободным. Все то, что ограничивает перемещения данного тела в пространстве, будем 

называть связью. 

Например, тело лежащее на столе – несвободное тело. Связью его является плоскость 

стола, которая препятствует перемещению тела вниз. 

Очень важен так называемый принцип освобождаемости, записывается он так. 

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их 

на тело заменить силами, такими, чтобы тело оставалось в равновесии. 

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его 

перемещениям, называется силой реакции (противодействия) связи или просто реакцией 

связи.  

Так у тела, лежащего на столе, связь – стол. Тело несвободное. Сделаем его свободным 

– стол уберем, а чтобы тело осталось в равновесии, заменим стол силой, направленной вверх и 

равной, конечно, весу тела. 

Направлена реакция связи в сторону, противоположную той, куда связь не дает 

перемещаться телу. Когда связь одновременно препятствует перемещениям тела по 

нескольким направлениям, направление реакции связи также наперед неизвестно и должно 

определяться в результате решения рассматриваемой задачи. 

Рассмотрим, как направлены реакции некоторых основных видов связей. 

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, 

трением о которую данного тела можно в первом приближении пренебречь. Такая 

поверхность не дает телу перемещаться только по направлению общего перпендикуляра 

(нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 1.6а). Поэтому 

реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям 

соприкасающихся тел в точке их касания и приложена в этой точке. Когда одна из 

соприкасающихся поверхностей является точкой (рис. 1.6б), то реакция направлена по 

нормали к другой поверхности.  

Если поверхности не гладкие, надо добавить еще одну силу – силу трения трF


, которая 

направлена перпендикулярно нормальной реакции N


 в сторону, противоположную 

возможному скольжению тела. 
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                                                           Рис. 1.6                                                

 

 
Рис. 1.7 

 

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис. 1.6в), не дает 

телу М удаляться от точки подвеса нити по направлению AM. Поэтому реакция Т натянутой 

нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, 

что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно 

избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить 

сжат стержень или растянут. 

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, 

проходящим через отверстия в этих телах, то такое соединение называется шарнирным или 

просто шарниром; осевая линия болта называется осью шарнира. Тело АВ, прикрепленное 

шарниром к опоре D (рис. 1.7а), может поворачиваться как угодно вокруг оси шарнира (в 

плоскости чертежа); при этом конец А тела не может переместиться ни по какому 

направлению, перпендикулярному к оси шарнира. Поэтому реакция R цилиндрического 

шарнира может иметь любое направление в плоскости, перпендикулярной к оси шарнира, т.е. 

в плоскости Аху. Для силы R в этом случае наперед не известны ни ее модуль R, ни 

направление (угол  ). 

4. Шаровой шарнир и подпятник. Этот вид связи закрепляет какую-нибудь точку тела 

так, что она не может совершать никаких перемещений в пространстве. Примерами таких 

связей служат шаровая пята, с помощью которой прикрепляется фотоаппарат к штативу (рис. 

1.7б) и подшипник с упором (подпятник) (рис. 1.7в). Реакция R шарового шарнира или 

подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни 

модуль реакции R, ни углы, образуемые ею с осями х, у, z. 

 
Рис. 1.8 

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ, 

закрепленный на концах шарнирами (рис. 1.8). Примем, что весом стержня по сравнению с 

воспринимаемой им нагрузкой можно пренебречь. Тогда на стержень будут действовать 

только две силы приложенные в шарнирах А и В. Но если стержень АВ находится в 

равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены 

вдоль одной прямой, т.е. вдоль оси стержня. Следовательно, нагруженный на концах 

стержень, весом которого по сравнению с этими нагрузками можно пренебречь, работает 
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только на растяжение или на сжатие. Если такой стержень является связью, то реакция 

N


стержня будет направлена вдоль оси стержня. 

6. Подвижная шарнирная опора (рис. 1.8, опора А) препятствует движению тела только 

в направлении перпендикулярном плоскости скольжения опоры. Реакция AN


 такой опоры 

направлена по нормали к поверхности, на которую опираются катки подвижной опоры. 

7. Неподвижная шарнирная опора (рис.18, опора В). Реакция 
BR


такой опоры проходит 

через ось шарнира и может иметь любое направление в плоскости чертежа. При решении 

задач будем реакцию BR


 изображать ее составляющими BX


 и BY


 по направлениям осей 

координат. Если мы, решив задачу, найдем BX


 и BY


, то тем самым будет определена и 

реакция BR


; по модулю 
22
BYBXBR   

 
Рис. 1.9 

Способ закрепления, показанный на рис.1.9, употребляется для того, чтобы в балке АВ 

не возникало дополнительных напряжений при изменении ее длины от изменения 

температуры или от изгиба. 

Заметим, что если опору А балки (рис.1.9) сделать тоже неподвижной, то балка при 

действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в 

три  уравнения равновесия войдут четыре неизвестные реакции AX


, AY


, BX


, BY


.  

8. Неподвижная защемляющая опора или жесткая заделка (рис. 1.10). В этом случае на 

заделанный конец балки со стороны опорных плоскостей действует система распределенных 

сил реакций. Считая эти силы приведенными к центру А, мы можем их заменить одной 

наперед неизвестной силой AR


, приложенной в этом центре, и парой с наперед неизвестным 

моментом AM


. Силу AR


 можно в свою очередь изобразить ее составляющими AX


 и AY


. 

Таким образом, для нахождения реакции неподвижной защемляющей опоры надо определить 

три неизвестных величины AX


, AY


 и AM


. Если под такую балку где-нибудь в точке В 

подвести еще одну опору, то балка станет статически неопределимой. 

 
Рис. 1.10 

 

При определении реакций связи других конструкций надо установить, разрешает ли 

она двигаться вдоль трех взаимно перпендикулярных осей и вращаться вокруг этих осей. Если 

препятствует какому-либо движению – показать соответствующую силу, если препятствует 

вращению – пару с соответствующим моментом. 
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Иногда приходится исследовать равновесие нетвердых тел. При этом будем 

пользоваться предположением, что если это нетвердое тело находится в равновесии под 

действием сил, то его можно рассматривать как твердое тело, используя все правила и методы 

статики. 

 

Проекция силы на ось и на плоскость. 

Перейдем к рассмотрению аналитического (численного) метода решения задач статики. 

Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого 

вектора, проекцией силы на ось называется скалярная величина, равная взятой с 

соответствующим знаком длине отрезка, заключенного между проекциями начала и конца 

силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в 

положительном направлении оси, и знак минус - если в отрицательном. Из определения 

следует, что проекции данной силы на любые параллельные и одинаково направленные оси 

равны друг другу. Этим удобно пользоваться при вычислении проекции силы на ось, не 

лежащую в одной плоскости с силой. 

 
Рис. 1.11 

 

Обозначать проекцию силы F


 на ось Ох будем символом xF . Тогда для сил, 

изображенных на рис. 1.11, получим:  

abABFx  1 ,    edEDQx  1 . 

Но из чертежа видно, что cos1 FAB  , 11 coscos  QQED  .  

Следовательно, 

cosFFx  , 1coscos  QQQx 
, 

т.е. проекция силы на ось равна произведению модуля силы на косинус угла между 

направлением силы и положительным направлением оси. При этом проекция будет 

положительной, если угол между направлением силы и положительным направлением оси - 

острый, и отрицательной, если этот угол - тупой; если сила перпендикулярна к оси, то ее 

проекция на ось равна нулю. 

 
Рис. 1.12  

Проекцией силы F


 на плоскость Оху называется вектор 1OBFxy  , заключенный 

между проекциями начала и конца силы F


 на эту плоскость (рис. 1.12). Таким образом, в 

отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так 

как она характеризуется не только своим численным значением, но и направлением в 
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плоскости Оху. По модулю cosFFxy  , где   — угол между направлением силы F


 и ее 

проекции xyF . 

В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти 

сначала ее проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию на 

плоскость спроектировать на данную ось. Например, в случае, изображенном на рис. 1.12, 

найдем таким способом, что 

.sincossin

,coscoscos









FFF

FFF

xyy

xyx

 
 

Геометрический способ сложения сил. 

Решение многих задач механики связано с известной из векторной алгебры операцией 

сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-

нибудь системы, будем называть главным вектором этой системы сил. Понятие о 

геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих 

систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, 

геометрическую же сумму (главный вектор) можно вычислить для любой системы сил. 

Геометрическая сумма (главный вектор) любой системы сил определяется или 

последовательным сложением сил системы по правилу параллелограмма, или построением 

силового многоугольника. Второй способ является более простым и удобным. Для нахождения 

этим способом суммы сил 1F


, 2F


, 3F


…, nF


 (рис. 1.13a), откладываем от произвольной точки 

О (рис. 1.13б) вектор Oa, изображающий в выбранном масштабе cилу F1, от точки a 

откладываем вектор ab , изображающий силу F2, от точки b откладываем вектор bc, 

изображающий силу F3 и т.д.; от конца m предпоследнего вектора откладываем вектор mn, 

изображающий силу Fn. Соединяя начало первого вектора с концом последнего, получаем 

вектор On= R


, изображающий геометрическую сумму или главный вектор слагаемых сил: 

nFFFR  ...21    или   .kFR  

От порядка, в котором будут откладываться векторы сил, модуль и направление R


 не 

зависят. Легко видеть, что проделанное построение представляет собою результат 

последовательного применения правила силового треугольника. 

 
Рис. 1.13 

 

Фигура, построенная на рис. 14,б, называется силовым (в общем случае векторным) 

многоугольником. Таким образом, геометрическая сумма или главный вектор нескольких сил 

изображается замыкающей стороной силового многоугольника, построенного из этих сил 

(правило силового многоугольника). При построении векторного многоугольника следует 

помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по 

обводу многоугольника), а у вектора R


 - в сторону противоположную. 

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно 

переходить от рассмотрения более простых систем сил к более сложным. Начнем с 

рассмотрения системы сходящихся сил. Сходящимися  называются силы, линии действия 

которых пересекаются в одной точке (см. рис. 1.13а). 
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По следствию из первых двух аксиом статики система сходящихся сил, действующих 

на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 

1.13а в точке А). 

Последовательно применяя аксиому параллелограмма сил, приходим к выводу, что 

система сходящихся сил имеет равнодействующую, равную геометрической сумме (главному 

вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы 
1F


, 
2F


, 

…, nF


 сходятся в точке A (рис. 1.13а), то сила, равная главному вектору R


, найденному 

построением силового многоугольника, и приложенная в точке А, будет равнодействующей 

этой системы сил. 

 

 

 

 

 

 

Момент силы относительно точки и оси 

 

Опыт показывает, что под действием силы твердое тело может наряду с 

поступательным перемещением совершать вращение вокруг того или иного центра. 

Вращательный эффект силы характеризуется ее моментом 

Рассмотрим силу F


, приложенную в точке А твердого тела (рис. 1.14). Допустим, что 

сила стремится повернуть тело вокруг центра О. Перпендикуляр h, опущенный из центра O на 

линию действия силы F


, называется плечом силы F


 относительно центра О. Так как точку 

приложения силы можно произвольно перемещать вдоль линии действия, то, очевидно, 

вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h; 2) от 

положения плоскости поворота ОАВ, проходящей через центр О и силу F; 3) от направления 

поворота к этой плоскости. 

 
Рис. 1.14 

 
Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом 

случае плоскость поворота для всех сил является общей и в дополнительном задании не 

нуждается.  

Тогда для количественного измерения вращательного эффекта можно ввести 

следующее понятие о моменте силы: моментом силы F


 относительно центра О называется 

величина, равная взятому с соответствующим знаком произведению модуля силы на длину 

плеча.  

Момент силы F


 относительно центра О будем обозначать символом m0(F). 

Следовательно, 

.)(0 FhFm 
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В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится 

повернуть тело вокруг центра О против хода часовой стрелки, и знак минус, - если по ходу 

часовой стрелки. Так, для силы F


, изображенной на рис. 1.14а, момент относительно центра 

О имеет знак плюс, а для силы, показанной на рис. 1.14б, - знак минус.  

Отметим следующие свойства момента силы: 

1) Момент силы не изменяется при переносе точки приложения силы вдоль ее линии 

действия. 

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна 

нулю или когда линия действия силы проходит через центр О (плечо равно нулю). 

3) Момент силы численно выражается удвоенной площадью треугольника ОАВ (рис. 

1.14б) 

ОАВплFm  .2)(0  
Этот результат следует из того, что 

.
2

1

2

1
. FhhАВОАВпл 

 
 

Главный вектор и главный момент системы сил 

 

Докажем следующую теорему Вариньона: момент равнодействующей плоской системы 

сходящихся сил относительно любого центра равен алгебраической сумме моментов 

слагаемых сил относительно того же центра. 

 
Рис. 1.15 

Рассмотрим систему сил 1F


, 2F


, …, nF


, сходящихся в точке А (рис. 1.15). Возьмем 

произвольный центр О и проведем через него ось Ох, перпендикулярную к прямой ОА; 

положительное направление оси Ох выбираем так, чтобы знак проекции любой из сил на эту 

ось совпадал со знаком ее момента относительно центра О. 

Для доказательства теоремы найдем соответствующие выражения моментов m0( 1F


), 

m0( 2F


), … . По формуле   110 .2 ОАВплFm  . Но, как видно из рисунка, 

xFOAОbОАОАВпл 11.2  , где F1x - проекция силы 1F


 на ось Ох; следовательно 

  xFОАFm 110 
.  

Аналогично вычисляются моменты всех других сил. 

Обозначим равнодействующую сил 1F


, 2F


, …, nF


, через R


, где  kFR . Тогда, по 

теореме о проекции суммы сил на ось, получим  kxx FR . Умножая обе части этого 

равенства на ОА, найдем: 

  )( kxx FОАRОА
 

или,  
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 )()( 00 kFmRm
. 

 

Пара сил. Момент пары 
Парой сил (или просто парой) называются две силы, равные по величине, параллельные 

и направленные в противоположные стороны (рис. 1.16). Очевидно, 21 FF  , 21 FF


  и 

021  FF


. 

 
Рис. 1.16 

 

Несмотря на то, что сумма сил равна нулю, эти силы не уравновешиваются. Под 

действием этих сил, пары сил, тело начнёт вращаться. И вращательный эффект будет 

определяться моментом пары: 

aFaFm  21 . 

Расстояние a между линиями действия сил называется плечом пары. 

Если пара вращает тело против часовой стрелки, момент её считается положительным 

(как на рис. 1.16), если по часовой стрелке – отрицательным.  

Для того, чтобы момент пары указывал и плоскость, в которой происходит вращение, 

его представляют вектором. 

Вектор момента пары m


 направляется перпендикулярно плоскости, в которой 

расположена пара, в такую сторону, что если посмотреть оттуда, увидим вращение тела 

против часовой стрелки (рис. 1.17). 

Нетрудно доказать, что вектор момента пары 1Frm


  – есть вектор этого векторного 

произведения (рис. 1.17). И заметим, что он равен вектору момента силы 1F


 относительно 

точки А, точки приложения второй силы: 

)( 1FMm A


 . 

О точке приложения вектора m


 будет сказано ниже. Пока приложим его к точке А. 

 
Рис. 1.17 

 

Свойства пар 

1) Проекция пары на любую ось равна нулю. Это следует из определения пары сил. 

2) Найдём сумму моментов сил 1F


 и 2F


 составляющих пару, относительно какой-либо 

точки О (рис. 1.18). 
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Рис. 1.18 

 

Покажем радиусы-векторы точек А1 и А2 и вектор r


, соединяющий эти точки. Тогда 

момент пары сил относительно точки О 

22112121 )()(),( FrFrFMFMFFM OOO




. 

Но rrr


 21 . Поэтому 1212221221 )()(),( FrFFrFrFrrFFMO




.  

Но 021  FF


, а mFr


 1 .  

Значит 
mFFMO


),( 21 . 

Момент пары сил относительно любой точки равен моменту этой пары. 

Отсюда следует, что, во-первых, где бы не находилась точка О и, во-вторых, где бы не 

располагалась эта пара в теле и как бы она не была повёрнута в своей плоскости, действие её 

на тело будет одинаково. Так как момент сил, составляющих пару, в этих случаях один и тот 

же, равный моменту этой пары m


. 

Поэтому можно сформулировать ещё два свойства. 

3) Пару можно перемещать в пределах тела по плоскости действия и переносить в 

любую другую параллельную плоскость. 

4) Так как действие на тело сил, составляющих пару, определяется лишь её моментом, 

произведением одной из сил на плечо, то у пары можно изменять силы и плечо, но так, чтобы 

момент пары остался прежним. Например, при силах F1=F2=5 H и плече а = 4 см момент пары 

m = 20 Hсм. Можно силы сделать равными 2 Н, а плечо а = 10 см. При этом момент останется 

прежним 20 Н см и действие пары на тело не изменится. 

Все эти свойства можно объединить и, как следствие, сделать вывод, что пары с 

одинаковым вектором момента m


 и неважно где расположенные на теле, оказывают на него 

равное действие. То есть такие пары эквивалентны. 

Исходя из этого, на расчётных схемах пару изображают в виде дуги со стрелкой, 

указывающей направление вращения, и рядом пишут величину момента m. Или, если это 

пространственная конструкция, показывают только вектор момента этой пары. И вектор 

момента пары можно прикладывать к любой точке тела. Значит вектор момента пары m


 – 

свободный вектор. 

И ещё одно дополнительное замечание. Так как момент пары равен вектору момента 

одной из сил её относительно точки приложения второй силы, то момент пары сил 

относительно какой-либо оси z – есть проекция вектора момента пары m


 на эту ось: 

cosmmz , 

где   – угол между вектором m


 и осью z. 

 

Сложение пар 

Пусть даны две пары с моментами m1 и m2, расположенные в пересекающихся 

плоскостях (рис.1.19). 

Сделаем у пар плечи одинаковыми, равными а = АВ. Тогда модули сил, образующих 

первую пару, должны быть равны: a

m
FF 1

11 
, а образующих вторую пару: a

m
FF 2

22 
. 
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Эти пары показаны на рис. 1.19, где 11 FF


 , 22 FF


 . И расположены они в своих 

плоскостях так, что плечи пар совпадают с прямой АВ на линии пересечения плоскостей. 

 
Рис. 1.19 

 

Сложив силы, приложенные к точкам А и В, построением параллелограммов, получим 

их равнодействующие 21 FFRB


  и 21 '' FFRA


 . Так как AB RR


 , то эти силы AR


 и BR


 

будут образовывать пару, момент которой BRam


 , где a


 – радиус-вектор точки В, 

совпадающий с АВ. 

Так как 21 FFRB


 , то момент полученной пары  

212121 )( mmFaFaFFam


 . 

Следовательно, в результате сложения пар, расположенных в пересекающихся 

плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых 

пар. 

При сложении нескольких пар, действующих в произвольных плоскостях, получим 

пару с моментом 

 imm


. 

Конечно, эта результирующая пара будет располагаться в плоскости перпендикулярной 

вектору m


. 

Равенство нулю результирующей пары будет означать, что пары, действующие на тело, 

уравновешиваются. Следовательно, условие равновесия пар 

0 im


. 

Если пары расположены в одной плоскости, векторы моментов их будут параллельны. 

И момент результирующей пары можно определить как алгебраическую сумму моментов пар. 

 
Рис. 1.20 

 

Например, пары, показанные на рис. 1.20, расположены в одной плоскости и моменты 

их: 

m1=2 Hсм , m2=5 Hсм, m3=3 Hсм. Пары уравновешиваются, потому что алгебраическая 

сумма их моментов равна нулю: 

0352321  mmmmi  
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Момент силы относительно оси 
Чтобы перейти к решению задач статики для случая произвольной пространственной 

системы сил, необходимо ввести еще понятие о моменте силы относительно оси.  

Момент силы относительно оси характеризует вращательный эффект, создаваемый 

силой, стремящейся повернуть тело вокруг данной оси. Рассмотрим твердое тело, которое 

может вращаться вокруг некоторой оси z (рис. 1.21).  

 
Рис. 1.21 

 

Пусть на это тело действует сила R , приложенная в точке А. Проведем через точку А 

плоскость ху, перпендикулярную оси z, и разложим силу R  на составляющие: N , 

параллельную оси z, и 0 , лежащую в плоскости ху ( .0
N

F
tg

пр
  является одновременно проекцией 

силы R  на плоскости ху). Сила, направленная параллельно оси z, очевидно, не может 

повернуть тело вокруг этой оси (она только стремится сдвинуть тело вдоль оси z). Весь 

вращательный эффект, создаваемый силой R , будет совпадать с вращательным эффектом ее 

составляющей. Отсюда заключаем, что прR , где символ  ) обозначает 

момент силы R  относительно оси z. 

Для силы же, лежащей в плоскости, перпендикулярной к оси z, вращательный эффект 

измеряется произведением модуля этой силы на ее расстояние h от оси. Но этой же величиной 

измеряется момент силы  относительно точки О, в которой ось z пересекается с плоскостью xу. 

Следовательно, sinP  или, согласно предыдущему равенству, 

cos0 PfFпр  . 

В результате приходим к следующему определению: моментом силы относительно оси 

называется скалярная величина, равная моменту проекции этой силы на плоскость, 

перпендикулярную оси, взятому относительно точки пересечения оси с плоскостью. 

 
Рис. 1.22 

 

Момент будем считать положительным, если с положительного конца оси z поворот, 

который сила, стремится совершить, виден происходящим против хода часовой стрелки, и 

отрицательным, если по ходу часовой стрелки. 

Из чертежа (рис. 1.22) видно, что при вычислении момента плоскость ху можно 

проводить через любую точку оcи z. Таким образом, чтобы найти момент силы относительно 

оси z (рис. 1.22) надо:  

1) провести плоскость ху, перпендикулярную к оси z (в любом месте); 
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2) спроектировать силу R  на эту плоскость и вычислить величину 0 ;  

3) опустить из точки О пересечения оси с плоскостью перпендикуляр на направление 

0  и найти его длину h;  

4) вычислить произведение;  

5) определить знак момента. 

При вычислении моментов надо иметь в виду следующие частные случаи: 

1) Если сила параллельна оси, то ее момент относительно оси равен нулю (так как 

00 tgf  ). 

2) Если линия действия силы пересекает ось, то ее момент относительно оси также 

равен нулю (так как h = 0). 

Объединяя оба случая вместе, заключаем, что момент силы относительно оси равен 

нулю, если сила и ось лежат в одной плоскости. 

3) Если сила перпендикулярна к оси, то ее момент относительно оси равен про-

изведению модуля силы на расстояние между силой и осью. 

 

 

Тема 1.2. Условия и уравнения равновесия систем сил. Пара сил.  

Система сочлененных тел. Расчет ферм.  

Центр параллельных сил. Центр тяжести тела.  

Методы определения положения центра тяжести.  

(Лекция-визуализация 0,5 часа) 

 

 Для равновесия любой плоской системы сил необходимо и достаточно, чтобы 

одновременно выполнялись условия: R = 0, M0 = 0. 

Здесь О - любая точка плоскости. 

Найдем вытекающие из равенств аналитические условия равновесия.  

Величины R и Мо определяются равенствами: 

,22
yx RRR 

   ),(00 kFmM
 

где  ,kxx FR  . kyy FR  Но R может равняться нулю только тогда, когда одновременно Rx = 

0 и Ry = 0. Следовательно, условия будут выполнены, если будет: 

  ,0kxF
  
  ,0kyF

  
 .0)(0 kFm

 
Равенства выражают, следующие аналитические условия равновесия: для равновесия 

произвольной плоской системы сил, необходимо и достаточно, чтобы суммы проекций всех 

сил на каждую из двух координатных осей и сумма их моментов относительно любого центра, 

лежащего в плоскости действия сил, были равны нулю. 

Теорема о трех моментах. Для равновесия плоской системы сил, действующих на 

твердое тело, необходимо и достаточно, чтобы суммы моментов этих сил системы 

относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на 

одной прямой, были равны нулю. 

 0)(  iA FM
;   

 0)(  iB FM
;  

 0)(  iC FM
 

 

Равновесие плоской системы параллельных сил  

В случае, когда все действующие на тело силы параллельны друг другу, мы можем 

направить ось Ох перпендикулярно к силам, а ось Оу параллельно им (рис. 1.23). Тогда 

проекция каждой из сил на Ox будет равна нулю и первое из 3-х  равенств обратится в 

тождество вида 0 = 0. В результате для параллельных сил останется два условия равновесия: 

  ,0kyF
  

 .0)(0 kFm
 

Где ось Оу параллельна силам. 
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Рис. 1.23 

 

Статически определимые и статически неопределимые задачи 

Для любой плоской системы сил, действующих на твердое тело, имеется три 

независимых условия равновесия. Следовательно, для любой плоской системы сил из условий 

равновесия можно найти не более трех неизвестных. 

В случае пространственной системы сил, действующих на твердое тело, имеется шесть 

независимых условия равновесия. Следовательно, для любой пространственной системы сил 

из условий равновесия можно найти не более шести неизвестных. 

Задачи, в которых число неизвестных не больше числа независимых условий 

равновесия  для данной системы сил, приложенных к твердому телу, называются статически 

определимыми. 

В противном случае задачи статически неопределимы. 

 

 

 

 

Сложение параллельных сил. Центр параллельных сил  

Пусть даны две параллельные силы 1F


 и 2F


, направленные в одну сторону и 

приложенные к точкам 1A  и 2A  (рис. 1.24). 

 
Рис. 1.24 

 

Конечно, величина их равнодействующей 21 FFR  . Вектор её параллелен силам и 

направлен в ту же сторону. С помощью теоремы Вариньона найдём точку приложения 

равнодействующей – точку С. По этой теореме 
   .iCC FMRM


   

Значит .coscos0 2211   CAFCAF  

Отсюда 

.
1

2

2

1

F

F

CA

CA


 То есть точка приложения равнодействующей делит расстояние 

между точками 1A  и 2A  на части обратно пропорциональные силам. 
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Если параллельные силы направлены в противоположные стороны (рис. 1.25), то 

аналогично можно доказать, что равнодействующая по величине будет равна разности сил: 

12 FFR   (если 12 FF  ), параллельна им, направлена в сторону большей силы и 

расположена за большей силой – в точке С. А расстояния от точки С до точек приложения сил 

обратно пропорциональны силам: 

.
1

2

2

1

F

F

CA

CA


 

Рис. 1.25 

 

Следует заметить, что если точка приложения равнодействующей расположена на 

одной прямой с точками 1A  и 2A , точками приложения сил, то, при повороте этих сил в одну 

сторону на одинаковый угол, равнодействующая также повернётся вокруг точки приложения 

С в том же направлении, и останется параллельной им. 

Такая точка приложения равнодействующей называется центром параллельных сил. 

Конечно, если хотя бы одну из сил перенести по своей линии действия в другую точку, 

то и точка приложения равнодействующей, центр параллельных сил, тоже переместится по 

линии действия. 

Следовательно, положение центра параллельных сил зависит от координат точек 

приложения сил. 

Центром нескольких параллельных сил, найденный последовательным сложением 

каждых двух сил, будем называть точку С, радиус-вектор которой определяется формулой 

R

rF

F

rF
r ii

i

ii
c


 




 


,        (1) 

где ir


 - радиусы-векторы точек приложения сил;  iFR – величина 

равнодействующей параллельных сил, равная алгебраической сумме этих сил (знак силы 

определяется направлением, которое заранее выбирается и считается положительным). 

Используя (1), нетрудно найти координаты центра параллельных сил. Если радиусы-

векторы откладывать из начала координат, то проекции радиусов-векторов точек на оси будут 

равны их координатам. Поэтому, проектируя векторное равенство (1) на оси, получим 

,;;
R

zF
z

R

yF
y

R

xF
x ii

c
ii

c
ii

c










    
где iii zyx ,,  – координаты точек приложения сил. 

 

Параллельные силы, распределенные по отрезку прямой 

 

а) общий случай  
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)(xq  - интенсивность распределенной силы  [Н/м], 
dxxqdR  )(  - элементарная сила. 

l  – длина отрезка 

Распределенная по отрезку прямой сила интенсивности )(xq  эквивалентна 

сосредоточенной силе  

l

dxxqR
0

)(

.   

Сосредоточенная сила прикладывается в точке С (центре параллельных сил) с 

координатой 

R

dxxxq

x

l

C



 0

)(

 
б) постоянная интенсивность 

 

lqdxqR
l

 0
0

0

 

2

2

0
0

0
lqdxqx

l

 

 

2

l
xC 

 
в) интенсивность, меняющаяся по линейному закону  

 

2

2

0
0

0
lqxdxqR

l

 

 

2

2

0
0

0
lqxdxqR

l

 

 

3

2 l
xC




. 

 

Центр тяжести тел 
На все точки тела, находящегося вблизи поверхности Земли, действуют силы – силы 

тяжести этих точек или их вес iP


. Вообще эти силы будут сходящимися – линии действия их 

пересекаются в центре Земли. Но, если пренебречь размерами тела в сравнении с размерами 

Земли, то можно считать их параллельными. 

Центр этих параллельных сил, сил тяжести точек, называется центром тяжести тела. 

Значит находить центр тяжести тел можно как центр параллельных сил. Например, 

координаты его 
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;;;
P

zP
z

P

yP
y

P

xP
x ii

c
ii

c
ii

c








   (2) 

где iP  – вес каждой точки тела, а  iPP – вес всего тела. 

 
Рис. 1.26 

 

При определении центра тяжести полезны несколько теорем. 

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в 

этой плоскости. 

Если оси х и у расположить в этой плоскости симметрии (рис. 1.26), то для каждой 

точки с координатами iii zyx ,,
 можно отыскать точку с координатами iii zyx ,,

. И 

координата cz  по (2), будет равна нулю, т.к. в сумме   ii zP
все члены имеющие 

противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в 

плоскости симметрии. 

 

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на 

этой оси. 

Действительно, в этом случае, если ось z провести по оси симметрии, для каждой точки 

с координатами iii zyx ,,
 можно отыскать точку с координатами iii zyx ,, 

 и координаты 

cx
 и cy

, вычисленные по формулам (2), окажутся равными нулю. 

 

Аналогично доказывается и третья теорема. 

3) Если однородное тело имеет центр симметрии, то центр тяжести тела находится в 

этой точке. 

 

И ещё несколько замечаний. 

Первое. Если тело можно разделить на части, у которых известны вес и положение 

центра тяжести, то незачем рассматривать каждую точку, а в формулах (2) iP
 – определять как 

вес соответствующей части и iii zyx ,,
 – как координаты её центра тяжести. 

Второе. Если тело однородное, то вес отдельной части его 
 ii VP

, где  - удельный 

вес материала, из которого сделано тело, а iV  - объём этой части тела. И формулы (1) примут 

более удобный вид. Например, 

.
V

xV

V

XV

P

xP
x iiiiii

c






 









  

И аналогично, 
,

V

yV
y ii

c




 
,

V

zV
z ii

c




 где  iVV
- объём всего тела. 
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Третье замечание. Если тело состоит из однородных пластин одинаковой, малой 

толщины, то объём каждой пластины 
,dSV ii 
 где iS  – площадь пластины, d – толщина. И 

координаты центра тяжести будут определяться только с помощью площадей: 

,;;
S

zS
z

S

yS
y

S

xS
x ii

c
ii

c
ii

c










 

где iii zyx ,,
 – координаты центра тяжести отдельных пластин;  iSS

 – общая 

площадь тела. 

Четвёртое замечание. Если тело состоит из стержней, прямых или криволинейных, 

однородных и постоянного сечения, то вес их 
, ii lP
 где li – длина,   – вес единицы 

длины (погонного метра), а координаты центра тяжести будут определяться с помощью длин 

отдельных участков: 

,;;
L

zl
z

L

yl
y

L

xl
x ii

c
ii

c
ii

c










 

где iii zyx ;;
 – координаты центра тяжести i -го участка; 

. ilL
 

Отметим, что согласно определению центр тяжести - это точка геометрическая; она 

может лежать и вне пределов данного тела (например, для кольца). 

 

Координаты центров тяжести неоднородных тел 
Координаты центра тяжести неоднородного твердого тела в выбранной системе 

отсчета определяются следующим образом: 
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где )z,y,x(Т  - вес единицы объема тела (удельный вес) 

 
V

Т d)z,y,x(

 -  вес всего тела. 

Если твердое тело представляет собой неоднородную поверхность, то координаты 

центра тяжести в выбранной системе отсчета определяются следующим образом: 
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где 
)z,y,x(S  - вес единицы  площади тела, 


S

S d)z,y,x(

 -  вес всего тела. 

Если твердое тело представляет собой неоднородную линию, то координаты центра 

тяжести в выбранной системе отсчета определяются следующим образом: 
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где )z,y,x(L - вес единицы  длины тела , 

 
L

L dl)z,y,x(

-  вес всего тела. 

 

Координаты центров тяжести однородных тел 

Для однородного тела вес kp  любой его части пропорционален объему k  этой части: 

kkp  , а вес Р всего тела пропорционален объему V этого тела Vpk  , где   - вес 

единицы объема. 

Подставив эти значения Р и kp  в предыдущие формулы, мы заметим, что в числителе 

  как общий множитель выносится за скобку и сокращается с   в знаменателе. В результате 

получим: 
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Как видно, центр тяжести однородного тела зависит только от его геометрической 

формы, а от величины   не зависит. По этой причине точку С, координаты которой 

определяются формулами, называют центром тяжести объема V. 

Путем аналогичных рассуждений легко найти, что если тело представляет собой 

однородную плоскую и тонкую пластину, то для нее 
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где S - площадь всей пластины, a ks - площади ее частей. 

Точку, координаты которой определяются формулами называют центром тяжести 

площади S. 

Точно так же получаются формулы для координат центра тяжести линии: 
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где L — длина всей линии, l — длины ее частей. 
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Таким образом, центр тяжести однородного тела определяется, как центр тяжести 

соответствующего объема, площади или линии. 

 

Способы определения координат центра тяжести 

Исходя из полученных выше общих формул,  можно указать конкретные способы 

определения координат центров тяжести тел. 

 
 

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии, то 

его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре 

симметрии. 

2. Разбиение. Тело разбивается на конечное число частей, для каждой из которых 

положение центра тяжести и площадь известны. 
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21 SSS  . 

3. Дополнение. Частный случай способа разбиения. Он применяется к телам, имеющим 

вырезы, если центры тяжести тела без выреза и вырезанной части известны. 
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
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21 SSS  . 

 

Центры тяжести некоторых однородных тел 

1) Центр тяжести дуги окружности. Рассмотрим дугу АВ радиуса R с центральным 

углом 2AOB . В силу симметрии центр тяжести этой дуги лежит на оси Ox (рис. 1.27).  

 
Рис. 1.27 

Найдем координату cx  по формуле 


)(

1

L
C xdl

L
x

. Для этого выделим на дуге АВ 

элемент ММ’ длиною Rddl  , положение которого определяется углом  . Координата х 

элемента ММ’ будет cosRx  . Подставляя эти значения х и dl и имея в виду, что интеграл 

должен быть распространен на всю длину дуги, получим: 

,sin2cos
1 22




 L

R
d

L

R
xdl

L
x

B

A
C 

  

где L - длина дуги АВ, равная 2R . Отсюда окончательно находим, что центр тяжести дуги 

окружности лежит на ее оси симметрии на расстоянии от центра О, равном 

,
sin




RxC 

 

где угол   измеряется в радианах. 

2) Центр тяжести площади треугольника. Разобьем площадь треугольника ABD (рис. 

1.28) прямыми, параллельными AD, на  узкие полоски; центры тяжести этих полосок будут 

лежать на медиане BE треугольника.  

Рис. 1.28 
 

Следовательно, и центр тяжести всего треугольника лежит на этой медиане. 

Аналогичный результат получается для двух других медиан. Отсюда заключаем, что центр 

тяжести площади треугольника лежит в точке пересечения его медиан. 

При этом, как известно, 
.

3

1
BECE 

 

3) Центр тяжести площади кругового сектора. Рассмотрим круговой сектор ОАВ 

радиуса R с центральным углом 2  (рис. 1.29). Разобьем мысленно площадь сектора ОАВ 

радиусами, проведенными из центра О, на п секторов. В пределе, при неограниченном 

увеличении числа  , эти секторы можно рассматривать как плоские треугольники, центры 

тяжести которых лежат на дуге DE радиуса 32R . Следовательно, центр тяжести сектора ОAB 

будет совпадать с центром тяжести дуги DE. Окончательно получим, что центр тяжести 
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площади кругового сектора лежит на его центральной оси симметрии на расстоянии от 

начального центра О, равном 
.

sin

3

2




RxC 

  

 
 

Рис. 1.29 

 

Пример 1. Определим центр тяжести однородного тела, изображённого на рис. 1.30. 

 
Рис. 1.30 

 

Тело однородное, состоящее из двух частей, имеющих симметричную форму. 

Координаты центров тяжести их: 

.см6;см5,7;см5,2
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Объёмы их: ;см50010105 3
1 V  

3
2 см50255 V .  

Поэтому координаты центра тяжести тела 
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V
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c
 

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на 

чертеже (рис. 1.31).  

Рис. 1.31 
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Координаты центров тяжести: ,см201 x  ,01 y  ,см5,21 z  

,см5,72 x  ,см5,22 y  .02 z   

Площади: ,см50105 2
1 S  .см75155 2

2 S  

Поэтому: 
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Пример 3. У квадратного листа 2020 см вырезано квадратное отверстие 55  см (рис. 

1.32). Найдем центр тяжести листа. 

 
Рис. 1.32 

 

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное 

отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра 

тяжести листа с отверстием:  
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25400
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координата 
,см83,9 cc xy
 так как тело имеет ось симметрии (диагональ). 

Пример 4. Проволочная скобка (рис. 1.33) состоит из трёх участков одинаковой длины 

l. 

 
Рис. 1.33 

 

Координаты центров тяжести участков: ,01 x  ly 5,01  , lz 1 ; lx 5,02  , ,2 ly   

;2 lz   
,3 lx 
 

,3 ly 
 

.5,03 lz 
 Поэтому координаты центра тяжести всей скобки: 
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Раздел 2. КИНЕМАТИКА 

 

Тема 2.1. Кинематика точки. Скорость и ускорение точки при координатном 

и естественном способах задания движения. Поступательное и вращательное движения 

твердого тела, уравнения движения, скорость и ускорение точек тела. 

(Лекция-визуализация 0,5 часа) 

 

Кинематикой называется раздел механики, в котором изучаются геометрические 

свойства движения тел без учета их инертности (массы) и действующих на них сил. 

Под движением мы понимаем в механике изменение, с течением времени положения 

данного тела в пространстве по отношению к другим телам. 

Для определения положения движущегося тела (или точки) в разные моменты времени 

с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь 

систему координат, образующую вместе с этим телом систему отсчета. 

Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, 

с которым они связаны). 

Движение тел совершается в пространстве с течением времени. Пространство в 

механике мы рассматриваем, как трехмерное евклидово пространство.  

Время является скалярной, непрерывно изменяющейся величиной. В задачах 

кинематики время t  принимают за независимое переменное (аргумент). Все другие 

переменные величины (расстояния, скорости и т.д.) рассматриваются как изменяющиеся с 

течением времени, т.е. как функции времени t .  

Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано 

(описано). 

Кинематически задать движение или закон движения тела (точки) - значит задать 

положение этого тела (точки) относительно данной системы отсчета в любой момент времени. 

Основная задача кинематики точки и твердого тела состоит в том, чтобы, зная закон 

движения точки (тела), установить методы определения всех кинематических величин, 

характеризующих данное движение. 

 

 

Способы задания движения точки 

Для задания движения точки можно применять один из следующих трех способов:  

1) векторный, 2) координатный, 3) естественный. 

1. Векторный способ задания движения точки. 

Пусть точка М движется по отношению к некоторой системе отсчета Oxyz. Положение 

этой точки в любой момент времени можно определить, задав ее радиус-вектор r


, 

проведенный из начала координат О в точку М (рис. 2.1). 
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Рис. 2.1 

 

При движении точки М вектор r


 будет с течением времени изменяться и по модулю, и 

по направлению. Следовательно, r


 является переменным вектором (вектором-функцией), 

зависящим от аргумента t : 

)(trr


 .  

Равенство определяет закон движения точки в векторной форме, так как оно позволяет 

в любой момент времени построить соответствующий вектор r


 и найти положение 

движущейся точки.  

Геометрическое место концов вектора r


, т.е. годограф этого вектора, определяет 

траекторию движущейся точки. 

2. Координатный способ задания движения точки.  

Положение точки можно непосредственно определять ее декартовыми координатами х, 

у, z (рис. 2.1), которые при движении точки будут с течением времени изменяться. Чтобы 

знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо 

знать значения координат точки для каждого момента времени, т.е. знать зависимости   

)(1 tfx  , )(2 tfy  , 
)(3 tfz 
. 

Уравнения представляют собой уравнения движения точки в прямоугольных 

декартовых координатах. Они определяют закон движения точки при координатном способе 

задания движения. 

Чтобы получить уравнение траектории надо из уравнений движения исключить 

параметр t . 

Нетрудно установить зависимость между векторным и координатным способами 

задания движения. 

Разложим вектор r


 на составляющие по осям координат: 

,krjrirr zyx




  

где zyx rrr ,,
- проекции вектора на оси; kji


,,  – единичные векторы направленные по 

осям, орты осей.  

Так как начало r


 вектора находится в начале координат, то проекции вектора будут 

равны координатам точки M. Поэтому   

.kzjyixr

  

Пример 1. Движение точки задано уравнениями 


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





.2cos3
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ty

tx

 
Чтобы исключить время, параметр t, найдём  из первого уравнения 

,
2

2sin
x

t 
 из второго 

.
3

2cos
y

t 
 Затем возведём в квадрат и 

сложим. Так как ,12cos2sin 22  tt  получим 
.1

32 2

2

2

2


yx

 Это 

уравнение эллипса с полуосями 2 см и 3 см (рис. 2.2). 

Начальное положение точки M0 (при t=0) определяется 

координатами 
,00 x .см30 y

  

Через 1 сек. точка будет в положении M1 с координатами 

  .см25,142,032cos3,см82,191,022sin2 11  yx  
Рис. 2.2  
 

Примечание. 

Движение точки может быть задано с помощью и других координат. Например, 

цилиндрических или сферических. Среди них будут не только линейные размеры, но и углы. 
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При необходимости, с заданием движения цилиндрическими и сферическими координатами 

можно познакомиться по учебникам. 

3. Естественный способ задания движения точки.  

 

Рис. 2.3 

 

Естественным способом задания движения удобно пользоваться в тех случаях, когда 

траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки 

М при ее движении относительно системы отсчета Oxyz (рис. 2.3) Выберем на этой траектории 

какую-нибудь неподвижную точку О', которую примем за начало отсчета, и установим на 

траектории положительное и отрицательное направления отсчета (как на координатной оси). 

Тогда положение точки М на траектории будет однозначно определяться криволинейной 

координатой s, которая равна расстоянию от точки О' до точки М, измеренному вдоль дуги 

траектории и взятому с соответствующим знаком. При движении точка М перемещается в 

положения M1, М2,..., следовательно, расстояние s будет с течением времени изменяться.  

Чтобы знать положение точки М на траектории в любой момент времени, надо знать 

зависимость 
)(tfs  .   

Уравнение выражает закон движения точки М вдоль траектории. 

Пример 2. Точка движется по прямой линии, по закону  см32  ts  (рис. 2.4).  

  
Рис. 2.4 

 

В начале движения, при .см30 00  sOMst  Положение точки M0 называется 

начальным положением. При .см5,c1 1  OMst  

Конечно, за 1 сек. точка прошла расстояние  M0M1=2 см. Так что s – это не путь 

пройденный точкой, а расстояние от начала отсчёта до точки. 

 

Вектор скорости точки 

Одной из основных кинематических характеристик движения точки является векторная 

величина, называемая скоростью точки.  

Известно, что при движении точки по прямой линии с постоянной скоростью, 

равномерно, скорость её определяется делением пройденного расстояния s на время:  

 

 

 

При неравномерном движении эта формула не годится. Введем сначала понятие о 

средней скорости точки за какой-нибудь промежуток времени. Пусть движущаяся точка 

находится 

t

s
υ =
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Рис. 2.5 

 

в момент времени t в положении М, определяемом радиусом-вектором r


, а в момент 1t  

приходит в положение M1 определяемое вектором 1r


 (рис. 2.5). Тогда перемещение точки за 

промежуток времени ttt  1  определяется вектором 1MM


 который будем называть 

вектором перемещения точки. Из треугольника ОММ1 видно, что 11 rMMr


 ; следовательно, 

rrrMM


 11 . 

Отношение вектора перемещения точки к соответствующему промежутку времени дает 

векторную величину, называемую средней по модулю и направлению скоростью точки за 

промежуток времени t : 

trtMMvср 


1 . 

Скоростью точки в данный момент времени t  называется векторная величина v , к 

которой стремится средняя скорость срv
 при стремлении промежутка времени t  к нулю: 

t

r
vv

t
ср

t 









00
lim)(lim

,        dt

rd
v





.  

Итак, вектор скорости точки в данный момент времени равен первой производной от 

радиуса-вектора точки по времени. 

Так как предельным направлением секущей ММ1 является касательная, то вектор 

скорости точки в данный момент времени направлен по касательной к траектории точки в 

сторону движения. 

 

Определение скорости точки при координатном способе задания движения 

Вектор скорости точки dtrdv


 , учитывая, что xrx  , yry  , zrz  ,  найдем: 

dt

dx
vx 

, dt

dy
v y 

, dt

dz
vz 

. 

Таким образом, проекции скорости точки на координатные оси равны первым 

производным от соответствующих координат точки по времени. 

Зная проекции скорости, найдем ее модуль и направление (т.е. углы  ,  ,  , которые 

вектор v  образует с координатными осями) по формулам 
222
zyx vvvv  ; 

vvxcos , vvycos ,  vvzcos . 

Итак, численная величина скорости точки в данный момент времени равна первой 

производной от расстояния (криволинейной координаты) s точки по времени.   

Направлен вектор скорости по касательной к траектории, которая нам наперед 

известна.  

 

Определение скорости точки при естественном способе задания движения 

Величину скорости можно определить как предел ( r  – длина хорды 1MM ): 
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
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где s – длина дуги 1MM . Первый предел равен единице, второй предел – производная  

.
dt

ds

 
Следовательно, скорость точки есть первая производная по времени от закона 

движения: 

.s
dt

ds
υ 

 
Направлен вектор скорости, как было установлено ранее, по касательной к траектории. 

Если величина скорости в данный момент будет больше нуля, то вектор скорости 

направляется в положительном направлении 

 

Вектор ускорения точки 

Ускорением точки называется векторная величина, характеризующая изменение с 

течением времени модуля и направления скорости точки. 

Пусть в некоторый момент времени t  движущаяся точка находится в положении М и 

имеет скорость v , а в момент 1t  приходит в положение 1M  и имеет скорость 1v  (рис. 2.6).  

 

Рис. 2.6 

 

Тогда за промежуток времени ttt  1  скорость точки получает приращение 

vvv


 1 . Для построения вектора v


  отложим от точки М вектор, равный 1v , и построим 

параллелограмм, в котором диагональю будет 1v


, a одной из сторон v


. Тогда, очевидно, 

вторая сторона и будет изображать вектор v


 . Заметим, что вектор v


  всегда направлен в 

сторону вогнутости траектории. 

Отношение приращения вектора скорости v


  к соответствующему промежутку 

времени t  определяет вектор среднего ускорения точки за этот промежуток времени: 

tvaср 


. 

Вектор среднего ускорения имеет то же направление, что и вектор v


 , т.е. направлен в 

сторону вогнутости траектории. 

Ускорением точки в данный момент времени t называется векторная величина a


, к 

которой стремится среднее ускорение срa


 при стремлении промежутка времени t  к нулю: 

Вектор ускорения точки в данный момент времени равен первой производной от вектора 

скорости или второй производной от радиуса-вектора точки по времени. 

Найдем, как располагается вектор a


 по отношению к траектории точки. При 

прямолинейном движении вектор a


 направлен вдоль прямой, по которой движется точка. 

Если траекторией точки является плоская кривая, то вектор ускорения a


, так же как и вектор 

срa


, лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не 

является плоской кривой, то вектор срa


 направлен в сторону вогнутости траектории и лежит в 

плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную 

касательной в соседней точке M1 (рис. 2.4). В пределе, когда точка М стремится к М, эта 

плоскость занимает положение так называемой соприкасающейся плоскости, т.е. плоскости, в 

которой происходит бесконечно малый поворот касательной к траектории при элементарном 
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перемещении движущейся точки. Следовательно, в общем случае вектор ускорения a


 лежит в 

соприкасающейся плоскости и направлен в сторону вогнутости кривой. 

 

Определение ускорения при координатном способе задания движения 

Вектор ускорения точки dtvda


 в проекции на оси получаем: 

2

2

dt

xd

dt

dv
a x

x 
,   

2

2

dt

yd

dt

dv
a

y

y 
,  

2

2

dt

zd

dt

dv
a z

z 
 

или 

xva xx  
,  

yva yy  
,  zva zz   , 

т.е. проекция ускорения точки на координатные оси равны первым производным от 

проекций скорости или вторым производным от соответствующих координат точки по 

времени. Модуль и направление ускорения найдутся из формул 

222
zyx aaaa  ; 

aax1cos , aay1cos ,  aaz1cos , 

где 1 , 1 , 1  - углы, образуемые вектором ускорения с координатными осями. 

Пример 3. Движение точки задано уравнениями 243,2 tytx  . 

Из первого уравнения 2

x
t 

. Подставив во второе, получим уравнение траектории: 

.3 2xy   

Это уравнение параболы. В начале движения, при 0t , точка находилась на самом 

верху, в положении M0 (
см3,0 00  yx

). 

А, например, при t =0,5 c она будет в положении M с координатами ;см11 x  .см21 y  

Проекции скорости на оси 
,ссм2 1- xυx 
   

.ссм8 1- tyυy 
  

При   ,c5,0t    
,ссм2 1-xυ    

.ссм4 1-yυ    

И  модуль  скорости 
.ссм47,442 1-2222  yx υυυ
   

Составляющие скорости по осям и вектор её показаны в масштабе на рис. 2.7. 

 

 
Рис. 2.7 

 

Проекции ускорения 
,0 xax 
 

2ссм8  yay 
. Так как проекция вектора 

ускорения на ось x равна нулю, а на ось y – отрицательна, то вектор ускорения направлен 

вертикально вниз, и величина его постоянна, не зависит от времени. 
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Определение ускорения при естественном способе задания движения. Касательное и 

нормальное ускорение точки 

При естественном способе задания движения вектор a


 определяют по его проекциям 

на оси nbM , имеющие начало в точке М и движущиеся вместе с нею (рис. 2.8). Эти оси, 

называемые осями естественного трехгранника (или скоростными (естественными) осями), 

направлены следующим образом: ось M  - вдоль касательной к траектории в сторону 

положительного отсчета расстояния s; ось Mn  - по нормали, лежащей в соприкасающейся 

плоскости и направленной в сторону вогнутости траектории; ось Mb  - перпендикулярно к 

первым двум так, чтобы она образовала с ними правую тройку. Нормаль Mn , лежащая в 

соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская), называется 

главной нормалью, а перпендикулярная к ней нормаль Mb  - бинормалью. 

 
Рис. 2.8 

  

Было показано, что ускорение точки a


 лежит в соприкасающейся плоскости, т.е. в 

плоскости nM ; следовательно, проекция вектора a


 на бинормаль равна нулю ( 0a ). 

Вычислим проекции a


, на две другие оси. Пусть в момент времени t точка находится в 

положении М и имеет скорость v , a в момент ttt 1  приходит в положение М1 и имеет 

скорость 1v . 

Тогда по определению 

t

vv

t

v
a

tt 












 1

00
limlim

. 

Перейдем в этом равенстве от векторов к их проекциям на оси M  и Mn , проведенные 

в точке М (рис. 2.8). Тогда на основании теоремы о проекции суммы (или разности) векторов 

на ось получим: 

t

vv
a

t 









1

0
lim

,  t

vv
a nn

t
n








1

0
lim

. 

Учитывая, что проекция вектора на параллельные оси одинаковы, проведем через точку 

М1 оси ,,
''

nMM  параллельные ,, MnM  и обозначим угол между направлением вектора 1v


 и 

касательной M  через  . Этот угол между касательными к кривой в точках М и М1 

называется углом смежности. 

Напомним, что предел отношения угла смежности   к длине дуги sMM 1  

определяет кривизну k кривой в точке М. Кривизна же является величиной, обратной радиусу 

кривизны   в точке М. Таким образом, 



 1
lim

0







k

ss
.   

Обращаясь теперь к чертежу (рис. 2.9), находим, что проекции векторов v  и 1v  на оси 

,, MnM будут равны:  













sin,cos

0,

1111 vvvv

vvv

n

n

, 

где v  и 1v  - численные величины скорости точки в моменты t  и 1t . 
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Следовательно, 













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



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lim,
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lim 1

0
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0
. 

Заметим что при 0t  точка М1 неограниченно приближается к М и одновременно 

vvs  1,0,0 . 

Тогда, учитывая, что в пределе   1coslim
0







, получим для a  выражение 

dt

dv

t

vv
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t









1

0
lim

. 

Правую часть выражения na  преобразуем так, чтобы в нее вошли отношения, пределы 

которых нам известны. Для этого умножим числитель и знаменатель дроби, стоящей под 

знаком предела, на . Тогда будем иметь 

p

v

t

s

s
va

t
n

2

1
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sin
lim 




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так как пределы каждого из стоящих в скобке сомножителей при 0t  равны: 

.lim,
1
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lim,lim 1 v
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Окончательно получаем: 

p

v
a

dt

sd

dt

dv
a n

2

2

2

; 

. 

Итак, мы доказали, что проекция ускорения точки на касательную равна первой 

производной от численной величины скорости или второй производной от расстояния 

(криволинейной координаты) s no времени, а проекция ускорения на главную нормаль равна 

квадрату скорости деленному на радиус кривизны траектории в данной точке кривой; 

проекция ускорения на бинормаль равна нулю ( 0ba ). Эти результаты выражают собою одну 

из важных теорем кинематики точки. 

 
Рис. 2.9 

 

Отложим вдоль касательной M  и главной нормали Mn  векторы a  и na , численно 

равные a  и na  (рис. 2.9). Эти векторы изображают касательную и нормальную составляющие 

ускорения точки. При этом составляющая na  будет всегда направлена в сторону вогнутости 

кривой (величина a всегда положительна), а составляющая a  может быть направлена или в 

положительном, или в отрицательном направлении оси M  в зависимости от знака проекции 

a  (см. рис. 2.9 а и б). 

Вектор ускорения точки a


 изображается диагональю параллелограмма, построенного 

на составляющих a  и na . Так как эти составляющие взаимно перпендикулярны, то по 

модулю: 
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Поступательное движение 

В кинематике, как и в статистике, будем рассматривать все твердые тела как абсолютно 

твердые.  

Абсолютно твердым телом называется материальное тело, геометрическая форма 

которого и размеры не изменяются ни при каких механических воздействиях со стороны 

других тел, а расстояние между любыми двумя его точками остается постоянным. 

Кинематика твердого тела, также как и динамика  твердого тела, является одним из  

наиболее трудных разделов курса теоретической механики. 

Задачи кинематики твердого тела распадаются на две части: 

1) задание движения и определение кинематических характеристик движения тела в 

целом; 

2) определение кинематических характеристик движения отдельных точек тела. 

Существует пять видов движения твердого тела: 

1) поступательное движение; 

2) вращение вокруг неподвижной оси; 

3) плоское движение;  

4) вращение вокруг неподвижной точки; 

5) свободное движение. 

Первые два называются простейшими движениями твердого тела. 

Начнем с рассмотрения поступательного движения твердого тела. 

Поступательным называется такое движение твердого тела, при котором любая прямая, 

проведенная в этом теле, перемещается, оставаясь параллельной своему начальному 

направлению. 

Поступательное движение не следует смешивать с прямолинейным. При 

поступательном движении тела траектории его точек могут быть любыми кривыми линиями. 

Приведем примеры. 

1. Кузов автомобиля на прямом горизонтальном участке дороги движется 

поступательно. При этом траектории его точек будут прямыми линиями. 

2. Спарник АВ (рис. 2.10) при вращении кривошипов AO1  и BO2  также движется 

поступательно (любая проведенная в нем прямая остается параллельной ее начальному 

направлению). Точки спарника движутся при этом по окружностям. 

          
Рис. 2.10      Рис. 2.11 

 

Поступательно движутся педали велосипеда относительно его рамы во время 

движения, поршни в цилиндрах двигателя внутреннего сгорания относительно цилиндров, 

кабины колеса обозрения в парках относительно Земли. 

 
Рис. 2.12 
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Свойства поступательного движения определяются следующей теоремой: при 

поступательном движении все точки тела описывают одинаковые (при наложении 

совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и 

направлению скорости и ускорения. 

Для доказательства рассмотрим твердое тело, совершающее поступательное движение 

относительно системы отсчета Oxyz. Возьмем в теле две произвольные точки А и В, положения 

которых в момент времени t определяются радиусами-векторами Ar


  и Br


 (рис. 2.11). 

Проведем вектор BA


, соединяющий эти точки.  

Тогда BArr AB 


. 

При этом длина АВ постоянна, как расстояние между точками твердого тела, а 

направление АВ остается неизменным, так как тело движется поступательно. Таким образом, 

вектор АВ во все время движения тела остается постоянным ( constAB  ). Вследствие этого, 

траектория точки В получается из траектории точки А параллельным смещением всех ее точек 

на постоянный вектор BA


. Следовательно, траектории точек А и В будут действительно 

одинаковыми (при наложении совпадающими) кривыми. 

Для нахождения скоростей точек А и В продифференцируем обе части равенства по 

времени. Получим 

dtBAddtrddtrd AB /)(// 


. 

Но производная от постоянного вектора АВ равна нулю. Производные же от векторов 

Ar


  и Br


 по времени дают скорости точек А и В. В результате находим, что 

BA vv


 , 

т.е. что скорости точек А и В тела в любой момент времени одинаковы и по модулю, и 

по направлению. Беря от обеих частей полученного равенства производные по времени: 

dtvddtvd BA //


   или  BA aa


 . 

Следовательно, ускорения точек А и В тела в любой момент времени тоже одинаковы 

по модулю и направлению. 

Так как точки А и В были выбраны произвольно, то из найденных результатов следует, 

что у всех точек тела их траектории, а также скорости и ускорения в любой момент времени 

будут одинаковы. Таким образом, теорема доказана. 

Из теоремы следует, что поступательное движение твердого тела определяется 

движением какой-нибудь одной из его точки. Следовательно, изучение поступательного 

движения тела сводится к задаче кинематике точки, нами уже рассмотренной. 

При поступательном движении общую для всех точек тела скорость v  называют 

скоростью поступательного движения тела, а ускорение a  - ускорением поступательного 

движения тела. Векторы v  и a  можно изображать приложенными в любой точке тела. 

Заметим, что понятие о скорости и ускорении тела имеют смысл только при 

поступательном движении. Во всех остальных случаях точки тела, как мы увидим, движутся с 

разными скоростями и ускорениями, и термины <<скорость тела>>  или <<ускорение тела>> 

для этих движений теряют смысл. 

 

Вращательное движение твердого тела вокруг оси. Угловая скорость и угловое ускорение 

Вращательным движением твердого тела вокруг неподвижной оси называется такое его 

движение, при котором какие-нибудь две точки, принадлежащие телу (или неизменно с ним 

связанные), остаются во все время движения неподвижными (рис. 2.13). 

Проходящая через неподвижные точки А и В прямая АВ называется осью вращения. 

Так как расстояния между точками твердого тела должны оставаться неизменными, то 

очевидно, что при вращательном движении все точки, принадлежащие оси вращения, будут 

неподвижны, а все остальные точки тела будут описывать окружности, плоскости которых 

перпендикулярны оси вращения, а центры лежат на этой оси. 
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Для определения положения вращающегося тела проведем через ось вращения, вдоль 

которой направим ось Az , полуплоскость - неподвижную и полуплоскость, врезанную в само 

тело и вращающуюся вместе с ним (рис. 2.13).  

 
Рис. 2.13 

 

Тогда положение тела в любой момент времени однозначно определится взятым с 

соответствующим знаком углом   между этими полуплоскостями, который назовем углом 

поворота тела. Будем считать угол   положительным, если он отложен от неподвижной 

плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с 

положительного конца оси Az ), и отрицательным, если по ходу часовой стрелки. Измерять 

угол   будем всегда в радианах. Чтобы знать положение тела в любой момент времени, надо 

знать зависимость угла   от времени t, т.е.  

 tf . 

Уравнение  выражает закон вращательного движения твердого тела вокруг 

неподвижной оси. 

Основными кинематическими характеристиками вращательного движения твердого 

тела являются его угловая скорость   и угловое ускорение  . 

Если за промежуток времени ttt  1  тело совершает поворот на угол   1 , то 

численно средней угловой скоростью тела за этот промежуток времени будет tср  / . В 

пределе при 0t  найдем, что 

dt

d
 

 или   . 

Таким образом, числовое значение угловой скорости тела в данный момент времени 

равно первой производной от угла поворота по времени. Знак   определяет направление 

вращения тела. Легко видеть, что когда вращение происходит против хода часовой стрелки, 

 >0, а когда по ходу часовой стрелки, то  <0. 

Размерность угловой скорости 1/Т (т.е. 1/время); в качестве единицы измерения обычно 

применяют рад/с или, что тоже, 1/с (с
-1

), так как радиан - величина безразмерная. 

Угловую скорость тела можно изобразить в виде вектора  , модуль которого равен | | 

и который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно 

происходящим против хода часовой стрелки (рис. 2.14). Такой вектор определяет сразу и 

модуль угловой скорости, и ось вращения, и направление вращения вокруг этой оси. 
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Рис. 2.14 

 

Угловое ускорение характеризует изменение с течением времени угловой скорости 

тела. Если за промежуток времени ttt  1  угловая скорость тела изменяется на величину 

  1 , то числовое значение среднего углового ускорения тела за этот промежуток 

времени будет tср  / . В пределе при 0t  найдем,  

2

2

dt

d

dt

d 
 

  или     . 

Таким образом, числовое значение углового ускорения, тела в данный момент времени 

равно первой производной от угловой скорости или второй производной от угла поворота 

тела по времени. 

Размерность углового ускорения 1/T
2
 (1/время

2
); в качестве единицы измерения обычно 

применяется рад/с
2
 или, что то же, 1/с

2 
 (с-

2
). 

Если модуль угловой скорости со временем возрастает, вращение тела называется 

ускоренным, а если убывает, - замедленным. Легко видеть, что вращение будет ускоренным, 

когда величины   и   имеют одинаковые знаки, и замедленным, - когда разные. 

Угловое ускорение тела (по аналогии с угловой скоростью) можно также изобразить в 

виде вектора  , направленного вдоль оси вращения. При этом 

dtd /


 . 

Направление   совпадает с направлением  , когда тело вращается ускоренно и (рис. 

2.14а), противоположно   при замедленном вращении (рис. 2.14б). 

 

Тема 2.2. Сложное движение точки: абсолютное, относительное и переносное движения 

точки, теорема о сложении скоростей и ускорений точки, ускорение Кориолиса. 

Плоскопараллельное движение твердого тела: уравнения движения, 

мгновенный центр скоростей (м.ц.с.) и пределение скоростей точек тела по м.ц.с. 

(Лекция-визуализация 0,5 часа) 

 

Если угловая скорость тела остается во все время движения постоянной ( =const), то 

вращение тела называется равномерным. Найдем закон равномерного вращения. Из формулы  

dt

d
 

 имеем  dtd   . 

Отсюда, считая, что в начальный момент времени t=0 угол 0  , и беря интегралы 

слева от 0  до  , а справа от 0 до t, получим окончательно 

t  0 . 

Из равенства следует, что при равномерном вращении, когда 00   

t   и t/  . 

В технике скорость равномерного вращения часто определяют числом оборотов в 

минуту, обозначая эту величину через n об/мин. Найдем зависимость между n об/мин и   1/с. 

При одном обороте тело повернется на угол 2 , а при n оборотах на n2 ; этот поворот 

делается за время t = 1 мин = 60 сек. Из равенства следует тогда, что 

nn 1,030/   . 

Если угловое ускорение тела во все время движения остается постоянным  const , 

то вращение называется равнопеременным. Найдем закон равнопеременного вращения, 

считая, что в начальный момент времени t=0 угол 0  , а угловая скорость 0   ( 0  - 

начальная угловая скорость). 



 

 

44 

Из формулы dt

d
 

 имеем dtd   . Интегрируя левую часть в пределах от 0  до 

 , а правую - в пределах от 0 до t, найдем  t  0 , 

tdtd   0/
 или 

tdtdtd   0 . 

Вторично интегрируя, найдем отсюда закон равнопеременного вращения  

2/2
00 tt  

. 

Если величины   и   имеют одинаковые знаки, то вращение будет равноускоренным, 

а если разные - равнозамедленным. 

Скорости и ускорения точек вращающегося тела 

Установив характеристики движения всего тела в целом, перейдем к изучению 

движения отдельных его точек. 

1. Скорости точек тела. Рассмотрим какую-нибудь точку М твердого тела, 

находящуюся на расстоянии h от оси вращения (см. рис. 2.13). При вращении тела точка М 

будет описывать окружность радиуса h, плоскость которой перпендикулярна оси вращения, а 

центр С лежит на самой оси. Если за время dt  происходит элементарный поворот тела на угол 

d , то точка М при этом совершает вдоль своей траектории элементарное перемещение 

hdds  . Тогда числовое значение скорости точки будет равно отношению ds  к dt , т.е. 

dt

d
h

dt

ds
v




  или  hv  . 

Скорость v  в отличие от угловой скорости тела называют иногда еще линейной или 

окружной скоростью точки М. 

Таким образом, числовое значение скорости точки вращающегося твердого тела равно 

произведению угловой скорости тела на расстояние от этой точки до оси вращения. 

Направлена скорость по касательной к описываемой точкой окружности или 

перпендикулярно плоскости, проходящей через ось вращения и точку М. 

Так как для всех точек тела   имеет в данный момент времени одно и то же значение, 

то скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения. 

 

        
Рис. 2.15     Рис. 2.16 

 

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся 

формулами dtdva / , /2van  . 

В нашем случае h . Подставляя значение v  в выражения a  и na , получим: 

,
dt

d
ha


 

   h

h
an

22


 
или окончательно:  

 ha 
,  

2han  . 

Касательная составляющая ускорения a  направлена по касательной к траектории (в 

сторону движения при ускоренном вращении тела и в обратную сторону при, замедленном); 
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нормальная составляющая na  всегда направлена по радиусу МС к оси вращения (рис. 2.16). 

Полное ускорение точки М будет naaa 22    или 
42   ha . 

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности 

определяется углом  , который вычисляется по формуле naatg /  . Подставляя сюда зна-

чения a  и na , получаем 2/ tg . 

Так как   и   имеют в данный момент времени для всех точек тела одно и то же 

значение, то ускорения всех точек вращающегося твердого тела пропорциональны их 

расстояниям от оси вращения и образуют в данный момент времени один и тот же угол   с 

радиусами описываемых ими окружностей. Поле ускорений точек вращающегося твердого 

тела имеет вид, показанный на рис. 2.18. 

 

                              

Рис. 2.17      Рис. 2.18 

 

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно 

для векторов v  и a , проведем из произвольной точки О оси АВ радиус-вектор r


 точки М (рис. 

2.17). Тогда sinrh   и по формуле 

 sin rhv   или  rv


  . 

Таким образом, модуль векторного произведения r


  равен модулю скорости точки 

М. Направления векторов r


  и v  тоже совпадают (оба они перпендикулярны плоскости 

ОМВ) и размерности их одинаковы. Следовательно, rv


  - формула Эйлера, т.е. вектор 

скорости любой точки вращающегося тела равен векторному произведению угловой скорости 

тела на радиус-вектор этой точки. 

Пример 5. Маятник OM  качается в вертикальной плоскости так, что t2sin5,0 . 

Длина .м1 lOM  (рис. 2.19) 

 
Рис. 2.19 

Маятник вращается вокруг горизонтальной оси O , перпендикулярной вертикальной 

плоскости. Угловая скорость ,c2cos 1 t   угловое ускорение .c2sin2 2-t   
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Например, при c1t  ;2645,02sin5,0  рад  1с42,02cos   (вращение по 

часовой стрелке); 2c82,12sin2  (угловое  ускорение направлено также по часовой 

стрелке). Вращение в этом положении ускоренное. 

Скорость точки M : lυM  1-см42,042,01   (определяется модуль скорости). 

Направлен вектор скорости соответственно направлению угловой скорости – в сторону 

вращения. 

Нормальное ускорение 
2lan  ,см176,042,01 2-2    

касательное ускорение 
2см82,182,11   la . (Определён опять модуль вектора 

ускорения. Направлен вектор a  вниз, как указывает угловое ускорение). 

Величина полного ускорения точки .см828,1 222  aaa nM  

 

 

Плоскопараллельное движение твердого тела: уравнения движения, 

мгновенный центр скоростей (м.ц.с.) 
 

 Название такого вида движения довольно точно его определяет. Часто это движение  

называют сферическим движением потому, что все точки тела движутся по сферическим 

поверхностям. 

Наглядным примером такого движения является волчок, закономерности движения 

которого лежат в основе гироскопических приборов. 

1) Углы Эйлера. Уравнения вращения тела с одной неподвижной точкой. 

Положение тела определяется тремя углами. Используются различные системы углов. 

Например, корабельные углы, самолётные углы и др. Но самыми распространёнными яв-

ляются углы Эйлера:   (пси),   (тета),   (фи).  

Положение тела определяется следующим образом. Назначаются две системы 

декартовых осей. Первая система – неподвижные оси zyx ,, . Начало которых берётся в 

неподвижной точке O  тела (рис. 2.20). Вторая система, оси 111 ,, zyx , связывается с телом. 

Поэтому положение тела будет определяться как положение этих осей относительно 

неподвижных.  

 
Рис. 2.20 

 

Когда  углы Эйлера равны нулю, подвижные оси совпадают с неподвижными. Чтобы 

определить положение тела, соответствующее заданным углам Эйлера, производим 

следующие действия. Сначала подвижные оси, а значит и тело, поворачиваем на угол   

вокруг оси z . При этом оси 1x  и 1y  отойдут от осей x  и y  в горизонтальной плоскости и ось 

1x  займёт положение OK  (рис. 2.20). Затем тело вращаем вокруг нового положения оси 1x  

. 

Рис. 9.5. Рис. 9.5. 
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(прямой OK ) на угол  . Ось 1z  отойдёт от оси z  на этот угол  , а ось 1y  приподнимется над 

горизонтальной плоскостью. Наконец, тело (и подвижные оси) вращаем вокруг нового 

положения оси 1z  на угол  . Ось 1x  отойдёт от положения OK  в наклонной плоскости, 

перпендикулярной оси 1z . Это положение тела и будет соответствовать углам Эйлера (на 

рисунке само тело не показано). 

Линия  пересечения неподвижной плоскости xOy  и подвижной 11Oyx , прямая OK , 

называется линией узлов. Угол   называется углом прецессии, угол   – углом нутации, угол   

– углом собственного вращения. Эти названия углов пришли из теории гироскопов. 

При движении тела углы Эйлера изменяются по определённым законам 

     ,;; ttt    которые называются уравнениями вращения. 

На примере вращающегося волчка можно лучше разобраться в этих углах Эйлера 

(рис.21). Ось волчка 1z  описывает конус вокруг неподвижной оси z . Это вращение 

определяется углом   (говорят: волчок совершает прецессию). Отклонение оси волчка от 

вертикали – угол нутации  .  

А вращение волчка вокруг своей оси 1z , определяемое углом   – собственное 

вращение. 

 
 

Рис. 2.21 

 

2) Теорема Даламбера – Эйлера. Мгновенная ось вращения. 

Проведём в теле сферическую поверхность произвольного радиуса с центром в 

неподвижной точке O  (рис. 2.22).  

 
Рис. 2.22 
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Покажем у тела какие-нибудь две точки A  и B , расположенные на этой сфере. Со-

единим их по сфере дугой наибольшего радиуса (кратчайшее расстояние между точками). 

Переместим тело в новое положение.  Точки, а  значит и дуга, займут положение 1A  и 1B . 

Соединим точки A  и BA ,1  и 1B  дугами большого радиуса 1AA  и 1BB . Посередине этих дуг 

проведём им перпендикулярные дуги и найдём их точку пересечения 1P . Соединим эту точку 

1P  с точками 11,,, BABA . Получим два сферических треугольника 1ABP  и 111 PBA , 

расположенных на этой сфере. Эти два треугольника равны, как треугольники с равными 

сторонами ( 11BAAB  , а 111 PAAP   и 111 PBBP   – как дуги равноудалённые от пер-

пендикуляров). Так как эти два треугольника расположены на одной сфере и имеют общую 

вершину 1P , то их можно совместить поворотом сферы, а значит и тела, вокруг прямой 1OP . 

Поэтому можно сделать вывод, что тело с одной неподвижной точкой можно 

переместить из одного положения в другое поворотом вокруг некоторой оси, проходящей 

через неподвижную точку O . Это утверждение – есть теорема Даламбера-Эйлера. 

Конечно, такое перемещение не является истинным движением тела. На самом деле 

тело переходило из первого положения в другое каким-то другим, наверное более сложным 

путём. Но, если время t  такого перехода мало, то это перемещение будет близко к 

действительному. А при 0t  можно предположить, что для данного момента времени тело 

поворачивается вокруг некоторой оси Р, проходящей через неподвижную точку O , вращаясь 

вокруг неё с угловой скоростью 


. Конечно, для каждого другого момента времени эта ось 

расположена иначе. Поэтому ось P  называют мгновенной осью вращения, а угловую скорость 




 – мгновенной угловой скоростью, вектор которой направлен по оси. 

 3) Скорость точек тела. 

По теореме Даламбера-Эйлера за малое время t  движение тела можно представить 

как вращение вокруг неподвижной оси 1OP  с некоторой угловой скоростью ср


 (рис. 2.23).  

 
 

Рис. 2.23 

 

Тогда скорость точки M : .rυ cрср


  В пределе, при 0t , угловая скорость ср


 

будет приближаться к мгновенной угловой скорости 


, направленной по мгновенной оси 

вращения P , а скорость точки срυ


- к истинному значению: 

 rυυ ср
t

ср
t







00
limlim

 
rr

t
ср

t







00
limlim

. 

Но таким же образом находится скорость точки при вращении тела вокруг оси, по 

которой направлен вектор 


, в нашем случае – по мгновенной оси вращения P . Поэтому 

скорость точки можно определить как скорость её при вращении тела вокруг мгновенной оси 

P . Величина скорости  hυ  (рис. 2.23). 

Определение скоростей точек тела значительно упрощается, если известна мгновенная 

ось вращения P . Иногда её можно найти, если удастся обнаружить у тела хотя бы ещё одну 

точку, кроме O , скорость которой в данный момент равна нулю, и провести ось P  из 

Рис. 9.8. 

Рис. 9.7. 
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неподвижной точки О через эту точку. Так как мгновенная ось вращения – геометрическое 

место точек, скорости которых равны нулю в данный момент времени. 

Пример 6. Водило aOA , вращаясь  вокруг вертикальной оси z  с угловой скоростью 

0 , заставляет диск радиуса R  кататься по горизонтальной плоскости (рис. 2.24). 

 
Рис. 2.24 

 

Если представить диск как основание конуса с вершиной в неподвижной точке O , то 

движение диска можно назвать  вращением вокруг этой неподвижной точки O .  

Так как скорость точки касания диска с плоскостью равна нулю, то мгновенная ось 

вращения P  проходит через эту точку. И вектор мгновенной угловой скорости 


 будет 

направлен по этой оси.  

Точка A  вместе с водилом OA  вращается вокруг оси z . Поэтому её скорость 0aυA   

(рис. 2.24). Эта скорость определяет направление вращения  диска вокруг оси P  и 

направление вектора 


. Величина угловой скорости  h

υA
 (h – расстояние от A  до оси P ). 

Теперь можно найти скорость любой точки диска, рассматривая его движение как вращение 

вокруг оси P . Так, например, скорость  точки B :   hυB 2 . Так как cosRh   и 

,cos
22 Ra

a




 
22

sin
Ra

R




, то 
0

220 1

cos





 Ra

RR

a

h

υА 
 и 

.2 0aυB 
 

 

Определение скоростей точек тела по м.ц.с. 

 

Сначала определим угловое ускорение тела dt

d






. При движении тела вектор 

угловой скорости 


 изменяется и по величине, и по направлению. Точка, расположенная на 

его конце будет двигаться по некоторой траектории со скоростью u


 (рис. 2.25).  

 

 
Рис. 2.25 
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Если рассматривать вектор 


 как радиус-вектор этой точки, то  


 





dt

d
u

. 

Итак. Угловое ускорение тела можно определить как скорость точки, расположенной 

на конце вектора угловой скорости: 

u


 .  

Этот результат называется теоремой Резаля. 

Теперь обратимся к определению ускорения точек. Ускорение какой-либо точки 

M тела  

  υr
dt

rd
r

dt

d
r

dt

d

dt

υd
a











 




, 

есть сумма двух векторов. 

Первый вектор ra


 1 . Модуль его 111 sin hra   , где h1 – расстояние от точки 

M  до вектора 


. Направлен он перпендикулярно 


 и r


. Но таким же способом определяется 

касательное ускорение. Поэтому первую составляющую ускорения определяют как ка-

сательное ускорение, предполагая, что тело вращается вокруг оси, совпадающей с вектором 




. И обозначается этот вектор ускорения так 

.ra


 
   

Второй вектор .2 υa


  Модуль его 22 sin υa  , но 902  , т.к. векторы 


 и υ


 

перпендикулярны друг другу.  

 
Рис. 2.26 

 

Значит 2
222  hhυa  , где h2 – расстояние от точки М до мгновенной оси P , 

до вектора 


.  

Направлен вектор 2a


 перпендикулярно 


 и υ


, т.е. так же как вектор нормального 

ускорения при вращении вокруг оси P , или вектора 


. Поэтому этот вектор ускорения и 

обозначают, соответственно, так: 

.υWn




  
Итак, ускорение точек тела, вращающегося вокруг неподвижной точки, определяется 

как сумма двух ускорений: 

.
 naaa




 
Этот результат называется теоремой Ривальса. 

Заметим, что в общем случае векторы 


 и 


 не совпадают и угол между 

a


 и 

na


 не 

равен 
90 , векторы не перпендикулярны друг другу, как это было при вращении тела вокруг 

неподвижной оси. 
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Пример 7. Продолжим исследование движения диска (пример 6). Модуль угловой 

скорости  
.const

cos
0  




R

a

h

υA

 Значит вектор 


 вместе с осью P , которая всегда 

проходит через точку касания диска с плоскостью, вращается вокруг оси z  и описывает конус. 

Точка М на конце вектора 


 движется по окружности радиуса  cosr  с угловой скоро-

стью 0
. Поэтому угловое ускорение диска  

2
00cos 

R

a
uM 

.  

Откладывается вектор 


 из неподвижной точки О. Направлен он, как скорость Mu


, 

перпендикулярно водилу OA , параллельно оси х (рис. 2.27). 

 

 
Рис. 2.27 
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Рис 9.12. 
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Раздел 3. ДИНАМИКА 

 

Тема 3.1. Динамика материальной точки, две основные задачи динамики материальной 

точки. Механическая система, внешние и внутренние силы, свойства внутренних сил, 

момент инерции, радиус инерции, теорема о моментах инерции относительно 

параллельных осей 

 

В разделе кинематики исследовалось движение тел без учета причин, обеспечивающих 

это движение. Рассматривалось движение, заданное каким-либо способом и определялись 

траектории, скорости и ускорения точек этого тела. 

В разделе динамики решается более сложная и важная задача. Определяется движение 

тела под действием сил приложенных к нему, с учетом внешних и внутренних условий, 

влияющих на это движение, включая самих материальных тел. 

Динамикой называется раздел механики, в котором изучаются законы движения 

материальных тел под действием сил. 

Понятие о силе, как о величине, характеризующей меру механического взаимодействия 

материальных тел, было введено в статике. Но при этом в статике мы, по существу, считали 

все силы постоянными. Между тем, на движущееся тело наряду с постоянными силами 

(постоянной, например, можно считать силу тяжести) действуют обычно силы переменные, 

модули и направления которых при движении тела изменяются.  

Как показывает опыт, переменные силы могут определенным образом зависеть от 

времени, от положения тела и от его скорости. В частности, от времени зависит сила тяги 

электровоза при постепенном выключении или включении реостата; от положения тела 

зависит сила упругости пружины; от скорости движения зависят силы сопротивления среды 

(воды, воздуха).  

К понятию об инертности тел мы приходим, сравнивая результаты действия одной и 

той же силы на разные материальные тела. Опыт показывает, что если одну и ту же силу 

приложить к двум разным, свободным от других воздействий покоящимся телам, то в общем 

случае по истечении одного и того же промежутка времени эти тела пройдут разные 

расстояния и будут иметь разные скорости. 

Инертность и представляет собой свойство материальных тел быстрее или медленнее 

изменять скорость своего движения под действием приложенных сил. Если, например, при 

действии одинаковых сил изменение скорости первого тела происходит медленнее, чем 

второго, то говорят, что первое тело является более инертным, и наоборот. 

Количественной мерой инертности данного тела является физическая величина, 

называемая массой тела. В механике масса т рассматривается как величина скалярная, 

положительная и постоянная для каждого данного тела.  

В общем случае движение тела зависит не только от его суммарной массы и 

приложенных сил; характер движения может еще зависеть от формы тела, точнее от взаимного 

расположения образующих его частиц (т.е. от распределения масс). 

Чтобы при первоначальном изучении динамики иметь возможность отвлечься от учета 

влияния формы тел (распределения масс), вводится понятие о материальной точке. 

Материальной точкой называют материальное тело (тело, имеющее массу), 

размерами которого при изучении его движения можно пренебречь. 

Практически данное тело можно рассматривать как материальную точку в тех случаях, 

когда расстояния, проходимые точками тела при его движении, очень велики по сравнению с 

размерами самого тела. Кроме того, как будет показано в динамике системы поступательно 

движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе 

всего тела. 

Наконец, материальными точками можно считать частицы, на которые мы будем 

мысленно разбивать любое тело при определении тех или иных его динамических 

характеристик. 
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Точку будем называть изолированной, если на точку не оказывается никакого влияния, 

никакого действия со стороны других тел и среды, в которой точка движется. Конечно, трудно 

привести пример подобного состояния. Но представить такое можно. 

Время в классической механике не связано с пространством и движением 

материальных объектов. Во всех системах отсчета движущихся друг относительно друга оно 

протекает одинаково. 

 

Законы динамики  
В основе динамики лежат законы, установленные путем обобщения результатов целого 

ряда опытов и наблюдений над движением тел и проверенные обширной общественно-

исторической практикой человечества. Систематически эти законы были впервые изложены 

И. Ньютоном.   

Первый закон (закон инерции), открытый Галилеем, гласит: изолированная от 

внешних воздействий материальная точка сохраняет свое состояние покоя или равномерного 

прямолинейного движения до тех пор, пока приложенные силы не заставят ее изменить это 

состояние. Движение, совершаемое точкой при отсутствии сил, называется движением по 

инерции. 

Закон инерции отражает одно из основных свойств материи - пребывать неизменно в 

движении и устанавливает для материальных тел эквивалентность состояний покоя и 

движения по инерции. Из него следует, что если F=0, то точка покоится или движется с 

постоянной по модулю и направлению скоростью  ( v


 =const); ускорение точки при этом равно 

нулю: a


 = 0); если же движение точки не является равномерным и прямолинейным, то на 

точку действует сила. 

Система отсчета, по отношению к которой выполняется закон инерции, называется 

инерциальной системой отсчета (иногда ее условно называют неподвижной). По данным 

опыта для нашей Солнечной системы инерциальной является система отсчета, начало которой 

находится в центре Солнца, а оси направлены на так называемые неподвижные звезды. При 

решении большинства технических задач инерциальной, с достаточной для практики 

точностью, можно считать систему отсчета, жестко связанную с Землей.  

Второй закон (основной закон динамики)  гласит: произведение массы точки на 

ускорение, которое она получает под действием данной силы, равно по модулю этой силе, а 

направление ускорения совпадает с направлением силы. 

 
Математически этот закон выражается векторным равенством  Fam  . 

При этом между модулями ускорения и силы имеет место зависимость   ma = F.    

Второй закон динамики, как и первый, имеет место только по отношению к 

инерциальной системе отсчета. Из этого закона непосредственно видно, что мерой инертности 

материальной точки является ее масса, так как две разные точки при действии одной и той же 

силы получают одинаковые ускорения только тогда, когда будут равны их массы; если же 

массы будут разные, то точка, масса которой больше (т.е. более инертная), получит меньшее 

ускорение, и наоборот. 

Если на точку действует одновременно несколько сил, то они, как известно, будут 

эквивалентны одной силе, т.е. равнодействующей R


, равной геометрической сумме этих сил. 

Уравнение, выражающее основной закон динамики, принимает в этом случае вид 

Ram   или  KFam . 

Третий закон (закон равенства действия и противодействия) устанавливает 

характер механического взаимодействия между материальными телами. Для двух 

материальных точек он гласит: две материальные точки действуют друг на друга с силами, 
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равными по модулю и направленными вдоль прямой, соединяющей эти точки, в 

противоположные стороны.  

 
 

Заметим, что силы взаимодействия между свободными материальными точками (или 

телами), как приложенные к разным объектам, не образуют уравновешенной системы.  

Проведём небольшой эксперимент. Попробуем перемещать тяжёлое тело по некоторой 

криволинейной траектории. Сразу обнаружим, что тело сопротивляется изменению 

направления движения, изменению скорости. Возникает сила со стороны тела, 

противодействующая силе F


, той, которую мы прикладываем к нему. 

Эту силу, с которой материальная точка сопротивляется изменению своего движения, 

будем называть силой инерции этой точки - инF


. По третьему закону она равна и 

противоположна действующей на точку силе F


, FF


ин . Но на основании второй аксиомы 

amF


 . Поэтому amF


ин
. 

Итак, сила инерции материальной точки по величине равна произведению её массы на 

ускорение 

maF ин
. 

И направлена эта сила инерции в сторону противоположную вектору ускорения. 

Например, при движении точки по кривой линии ускорение τaaa n




. Поэтому сила 

инерции  
ининин
 FFamamamF nn




. 

То есть её можно находить как сумму двух сил: нормальной силы инерции и 

касательной силы инерции.  

 
Рис. 3.1 

 

Причём 

,
2

ин




υ
mFn

   
.ин

dt

dυ
mF 

 
Необходимо заметить, что сила инерции материальной точки, как сила 

противодействия, приложена не к точке, а к тому телу, которое изменяет её движение. Это 

очень важно помнить. 

Третий закон динамики, как устанавливающий характер взаимодействия материальных 

частиц, играет большую роль в динамике системы.  
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Четвертый закон (закон независимого действия сил). При одновременном действии 

на материальную точку нескольких сил ускорение точки относительно инерционной системы 

отсчета от действия каждой отдельной силы не зависит от наличия  других, приложенных к 

точке, сил и полное ускорение равно векторной сумме ускорений от действия отдельных сил. 

ii Fam



; 


i

iaa


 

 

Задачи динамики для свободной и несвободной материальной точки 

Для свободной материальной точки задачами динамики являются следующие: 1) зная 

закон движения точки, определить действующую на нее силу (первая задача динамики); 2) 

зная действующие на точку силы, определить закон движения точки (вторая или основная 

задача динамики). 

Решаются обе эти задачи с помощью уравнений, выражающих основной закон 

динамики, так как эти уравнения связывают ускорение a


 т.е. величину, характеризующую 

движение точки, и действующие на нее силы. 

В технике часто приходится сталкиваться с изучением несвободного движения точки, 

т.е. со случаями, когда точка, благодаря наложенным на нее связям, вынуждена двигаться по 

заданной неподвижной поверхности или кривой. 

Несвободной материальной точкой называется точка, свобода движения которой 

ограничена. 

Тела, ограничивающие свободу движения точки, называются связями. 

Пусть связь представляет собой поверхность какого-либо тела, по которой движется 

точка. Тогда координаты точки должны удовлетворять уравнению этой поверхности,  которое 

называется уравнением связи. 

  0,, zyxf  
Если точка вынуждена двигаться по некоторой линии, то уравнениями связи являются 

уравнения этой лини. 

  0,,1 zyxf ,    0,,2 zyxf  

Таким образом, движение несвободной материальной точки зависит не только от 

приложенных к ней активных сил и начальных условий, но так же от имеющихся связей. При 

этом значения начальных параметров должны удовлетворять уравнениям связей. 

Связи бывают двухсторонние или удерживающие и односторонние или 

неудерживающие. 

Связь называется двухсторонней если, накладываемые ею на координаты точки 

ограничения выражаются в форме равенств, определяющих кривые или поверхности в 

пространстве на которых должна находится точка. 

Пример. Материальная точка подвешена на стержне длины  l . 

Уравнение связи имеет вид: 
2222 lzyx   

 
Рис. 3.2 

 

Связь называется односторонней если, накладываемые ею на координаты точки 

ограничения выражаются в форме неравенств. Односторонняя связь препятствует 
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перемещению точки лишь в одном направлении и допускает ее перемещение в других 

направлениях. 

В случаях несвободного движения точки, как и в статике, будем при решении задач 

исходить из аксиомы связей (принцип освобождаемости от связей), согласно которой всякую 

несвободную материальную точку можно рассматривать как свободную, отбросив связь и 

заменив ее действие реакцией этой связи N


. Тогда основной закон динамики для 

несвободного движения точки примет вид:  

NFam a
k  ,  

где 
a

kF
 -действующие на точку активные силы. 

Пусть на точку действует несколько сил. Составим для неё основное уравнение 

динамики: 
.iFam




 Перенесём все члены в одну сторону уравнения и запишем так: 

0 amFi



 или 
0ин  ii FF



. 

Это уравнение напоминает условие равновесия сходящихся сил. Поэтому можно 

сделать вывод, что, если к движущейся материальной точке приложить её силу инерции, то 

точка будет находиться в равновесии. (Вспомним, что на самом деле сила инерции не 

приложена к материальной точке и точка не находится в равновесии.) Отсюда следует метод 

решения таких задач, который называется методом кинетостатики: 

Если к силам, действующим на точку, добавить ее силу инерции, то задачу можно 

решать методами статики, составлением уравнений равновесия. 

Первая задача динамики для несвободного движения будет обычно сводиться к тому, 

чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. 

Пример 1. При движении автомобиля с постоянным ускорением a


, маятник 

(материальная точка подвешенная на нити) отклоняется от вертикали на угол   (рис. 3.3). 

Определим с каким ускорением движется автомобиль и натяжение нити.  

 
Рис. 3.3 

Рассмотрим «динамическое равновесие» точки. Его так называют потому, что на самом 

деле точка не находится в равновесии, она движется с ускорением.  

На точку действуют силы: вес Р


 и натяжение нити S


, реакция нити. Приложим к 

точке ее силу инерции 

a
g

P
maF ин

, направленную в сторону противоположную 

ускорению точки и автомобиля, и составим уравнение равновесия: 

.0cos;0

;0sin;0





PSY

SFX

i

ин
i





 

Из второго уравнения следует 
.

cos

P
S 

  

Из первого 

0sin  SW
g

P

 и 



 tgsin

cos
sin  g

P

P

g
S

P

g
W

. 

Пример 2. Лифт весом Р (рис. 3.4) начинает подниматься с ускорением a . Определить 

натяжение троса.  
Рис. 13.1. 
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Т    

а    

Р     Рис. 3.4 

 

Рассматривая лифт как свободный, заменяем действие связи (троса) реакцией Т и, 

составляя уравнение NFam a
k   в проекции на вертикаль, получаем:   

PTa
g

P


. 

Отсюда находим: 










g

a
PT 1

. 

Если лифт начнёт опускаться с таким же ускорением, то натяжение троса будет равно: 











g

a
PT 1

. 

 

 

Дифференциальные уравнения движения точки 

С помощью дифференциальных уравнений движения решается вторая задача 

динамики. Правила составления таких уравнений зависят от того, каким способом хотим 

определить движение точки. 

 

1) Определение движения точки координатным способом. 

Рассмотрим свободную материальную точку, движущуюся под действием сил 1F


, 2F


,.., 

nF


. Проведем неподвижные координатные оси Oxyz (рис. 3.5). Проектируя обе части 

равенства  kFma  на эти оси и учитывая, что 
2

2

dt

xd
ax 

 и т.д., получим дифференциальные 

уравнения криволинейного движения точки в проекциях на оси прямоугольной декартовой 

системы координат: 

 kxF
dt

xd
m

2

2

,  
 kyF

dt

yd
m

2

2

, 
 kzF

dt

zd
m

2

2

. 

 
Рис. 3.5 
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Так как действующие на точку силы могут зависеть от времени, от положения точки и 

от ее скорости, то правые части уравнений могут содержать время t, координаты точки х, у, z и 

проекции ее скорости dt

dz

dt

dy

dt

dx
,,

. При этом в правую часть каждого из уравнений могут 

входить все эти переменные. 

Чтобы с помощью этих уравнений решить основную задачу динамики, надо, кроме 

действующих сил, знать еще начальные условия, т.е. положение и скорость точки в начальный 

момент. В координатных осях Oxyz начальные условия задаются в виде: при 0t  









000

000

,,

,,

zzyyxx vvvvvv

zzyyxx

.   

Зная действующие силы, после интегрирования уравнений найдем координаты х, y, z 

движущейся точки, как функции времени t, т.е. найдем закон движения точки. 

Пример 3. Изучим движение тела, брошенного с начальной скоростью 0V  под углом   

к горизонту, рассматривая его как материальную точку массы т. При этом сопротивлением 

воздуха пренебрежём, а поле тяжести будем считать однородным (Р=const), полагая, что 

дальность полёта и высота траектории малы по сравнению с радиусом Земли. 

Поместим начало координат О в начальном положении точки. Направим ось 

Oy вертикально вверх; горизонтальную ось Ox расположим в плоскости, проходящей через Оy 

и вектор 0V , а ось Oz проведём перпендикулярно первым двум осям (рис. 3.6). Тогда угол 

между вектором 0V  и осью Ox будет равен  . 

  
Рис. 3.6 

 

Изобразим движущуюся точку М где-нибудь на траектории. На точку действует одна 

только сила тяжести P


, проекции которой на оси координат равны: 0xP , mgPPy  ,  

0zP .  

Подставляя эти величины в дифференциальные уравнения и замечая, что dt

dVx

dt

xd


2

 и 

т.д. мы после сокращения на m получим: 

0
dt

dVx

,    
0

dt

dVy

,   
0

dt

dVz

. 

Умножая обе части этих уравнений на dt и интегрируя, находим: 

1CVx  ,   2CdtVy 
,  3CVz   

Начальные условия в нашей задаче имеют вид: 

при t=0:      

0x ,   
cos0VVx     

0y ,   
sin0VVy     

0z ,    0zV . 
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Удовлетворяя начальным условиям, будем иметь: 

cos01 VC  ,   sin01 VC  ,   03 C . 

Подставляя эти значения С1, С2 и С3 в найденное выше решение и заменяя xV , yV , zV  

на 
,,,

dt

dz

dt

dy

dt

dx

 придём к уравнениям: 

0,sin,cos 00 
dt

dz
gtV

dt

dy
V

dt

dx


. 

Интегрируя эти уравнения, получим: 

0,
2

sin,cos 5

2

040  zC
gt

tVyCtVx 
. 

Подстановка начальных данных даёт С4=С5=С6=0, и мы окончательно находим 

уравнения движения точки М в виде: 

0,
2

sin,cos
2

00  z
gt

tVytVx 
       (1) 

Из последнего уравнения следует, что движение происходит в плоскости Оxy. 

Имея уравнение движения точки, можно методами кинематики определить все 

характеристики данного движения. 

1. Траектория точки. Исключая из первых двух уравнений (1) время t, получим 

уравнение траектории точки: 

.
cos2 22

0

2




V

gx
xtgy 

         (2) 

Это - уравнение параболы с осью, параллельной оси Оy. Таким образом, брошенная под 

углом к горизонту тяжёлая точка движется в безвоздушном пространстве по параболе 

(Галилей). 

2. Горизонтальная дальность. Определим горизонтальную дальность, т.е. измеренное 

вдоль оси Оx расстояние ОС=Х. Полагая в равенстве (2) y=0, найдём точки пересечения 

траектории с осью Ох. Из уравнения: 

0)
cos2

(
22

0





V

gx
tgx

      

получаем  

.
cos2

,0
22

0
21

g

tgV
xx




     

Первое решение дает точку О, второе точку С. Следовательно, Х=Х2 и окончательно 

α2sin
2

0

g

V
X 

.         (3)  

Из формулы (3) видно, что такая же горизонтальная дальность X будет получена при 

угле  , для которого  21802 0  , т.е. если угол   090 . Следовательно, при данной 

начальной скорости 0V  в одну и ту же точку С можно попасть двумя траекториями: на-

стильной (
045 ) и навесной ( 00 4590   ). 

При заданной начальной скорости 0V  наибольшая горизонтальная дальность в 

безвоздушном пространстве получается, когда 12sin  , т.е. при угле 
045 . 

3. Высота траектории. Если положить в уравнении (2) 

 

αcosαsin
2

1
2

0

g

V
Xx 

, то найдется высота траектории Н: 

2
2

0 sin
2g

V
H 

.          (4) 
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4. Время полета. Из первого уравнения системы (1) следует, что полное время полета Т 

определяется равенством cos0TVX  . Заменяя здесь Х его значением, получим 

sin
2 0

g

V
T 

. 

При угле наибольшей дальности 
045  все найденные величины равны: 

.2**,
4

1

4
*,* 0

2
0

2
0

g

V
Tx

g

V
H

g

V
x 

 
Полученные результаты практически вполне приложимы для ориентировочного 

определения характеристик полета снарядов (ракет), имеющих дальности порядка 200…600 

км, так как при этих дальностях (и при 045 ) снаряд основную часть своего пути проходит 

в стратосфере, где сопротивлением воздуха можно пренебречь. При меньших дальностях на 

результат будет сильно влиять сопротивление воздуха, а при дальностях свыше 600 км силу 

тяжести уже нельзя считать постоянной. 

Пример 4. Из пушки, установленной на высоте h, произвели выстрел под углом   к 

горизонту (рис. 3.7). Ядро вылетело из ствола орудия со скоростью u. Определим уравнения 

движения ядра. 

 
Рис. 3.7 

 

Чтобы правильно составить дифференциальные уравнения движения, надо решать 

подобные задачи по определённой схеме. 

а) Назначить систему координат (количество осей, их направление и начало 

координат). Удачно выбранные оси упрощают решение. 

б) Показать точку в промежуточном положении. При этом надо проследить за тем, 

чтобы координаты такого положения обязательно были положительными (рис. 3.7). 

в) Показать силы, действующие на точку в этом промежуточном положении (силы 

инерции не показывать!). 

В этом примере – это только сила Р


, вес ядра. Сопротивление воздуха учитывать не 

будем. 

г) Составить дифференциальные уравнения по формулам: 

,0x
g

Р


 

Py
g

P


. Отсюда 

получим два уравнения: 0x  и gy  . 

д) Решить дифференциальные уравнения. 

Полученные здесь уравнения – линейные уравнения второго порядка, в правой части – 

постоянные. Решение этих уравнений элементарно. 









,

,

1

1

Dgty

Cx





      и       












.
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1

,

21
2
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DtDgty
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Осталось найти постоянные интегрирования. Подставляем начальные условия (при t = 

0 x = 0, y = h, 
 cosux x 

, 
 sinuy y 

) в эти четыре уравнения: 1cos Cu  ,  

1sin Du  ,  0 = С2,  h = D2. 

Подставляем в уравнения значения постоянных и записываем уравнения движения 

точки в окончательном виде 













.sin
2

1

,cos

2 hutgty

utx





 
Имея эти уравнения, как известно из раздела кинематики, можно определить и 

траекторию движения ядра, и скорость, и ускорение, и положение ядра в любой момент 

времени. 

Как видно из этого примера, схема решения задач довольно проста. Сложности могут 

возникнуть только при решении дифференциальных уравнений, которые могут оказаться 

непростыми. 

 

2) Определение движения точки естественным способом. 

Координатным способом обычно определяют движение точки, не ограниченные 

какими-либо условиями, связями. Если на движение точки наложены ограничения, на 

скорость или координаты, то определить такое движение координатным способом совсем не 

просто. Удобнее использовать естественный способ задания движения.  

Определим, например, движение точки по заданной неподвижной линии, по заданной 

траектории (рис. 3.8). 

 
Рис. 3.8 

 

На точку М кроме заданных активных сил iF


, действует реакция линии. Показываем 

составляющие реакции R


 по естественным осям .,, BTN


 

Составим основное уравнение динамики  
BTNFam i


  и спроектируем его на 

естественные оси 















.

,

,

BFma

TFma

NFma

ibB

i

inn



 

Так как 

,0,,
2

 bn as
dt

dυ
a

υ
a 

  то получим дифференциальные уравнения 

движения, такие  
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



















.0       

,    

,
2

BF

TFsm

NF
υ

m

ib

i

in







         (5) 

Здесь сила T


 - сила трения. Если линия, по которой движется точка, гладкая, то Т = 0 и 

тогда второе уравнение будет содержать только одну неизвестную – координату s: 

 iFsm  . 

Решив это уравнение, получим закон движения точки )(tss  , а значит, при 

необходимости, и скорость и ускорение. Первое и третье уравнения (5) позволят найти 

реакции N


 и B


. 

 

Пример 5. Лыжник спускается по цилиндрической поверхности радиуса r. Определим 

его движение, пренебрегая сопротивлениями движению (рис. 3.9). 

 
Рис. 3.9 

 

Схема решения задачи та же, что и при координатном способе (пример 4). Отличие 

лишь в выборе осей. Здесь оси N и Т движутся вместе с лыжником. Так как траектория – 

плоская линия, то ось В, направленную по бинормали, показывать не нужно (проекции на ось 

В действующих на лыжника сил будут равны нулю). 

Дифференциальные уравнения по (5) получим такие 

.sin;cos
2

 PN
r

υ

g

P
Ps

g

Р


       (6) 

Первое уравнение получилось нелинейным: cosgs  . Так как rs  , то его можно 

переписать так: 
0cos  

r

g


. Такое уравнение можно один раз проинтегрировать. Запишем 

.
2

1 2















d

d

d

d

d

d

dt

d 



 

 Тогда в дифференциальном уравнении переменные разделятся: 

 d
r

g
d  cos22

. Интегрирование дает решение 
.sin2 1

2 C
r

g
 

 Так как при t = 0: 0  

и 
00 

, то С1= 0 и 
,sin2 

r

g


 а 
.sin2  grrs  
 

К сожалению, в элементарных функциях второй интеграл найти невозможно. Но и 

полученное решение позволяет сделать некоторые выводы. Можно найти скорость лыжника в 

любом положении как функцию угла  . Так в нижнем положении, при 2


 

, 
grsυ 2 

. А 

Рис. 13.5. 
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из второго уравнения (6) при 2


 

 можно определить давление: 

r

υ

g

P
PN

2

 P
r

gr

g

P
P 3

2


. То есть давление на лыжника в нижнем положении равно его 

трехкратному весу. 

Пример 6: Точка, имеющая массу m, движется из состояния покоя по окружности 

радиуса R  с постоянным касательным ускорением a . Определить действующую на точку 

силу в момент, когда она пройдет по траектории расстояние 21 Rs  . 

 
Рис. 3.10 

 

Решение: Применяя дифференциальные уравнения движения точки в проекциях на 

естественные оси, имеем: 

 amF 
;     R

v
mFn

2


;     

0bF
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
 
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; следовательно   a

R
t
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1 

; 

8
8

22

2
2

2

4
1

2





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

Ra

R
a

R

ta






;  следовательно 

 amamtF  381)( 1  

amtF  3)( 1  
 

 

Тема 3.2. . Общие теоремы динамики: количество движения, теорема об изменении 

количества движения. Общие теоремы динамики: кинетический момент, теорема об 

изменении кинетического момента. 

 

Общие теоремы динамики точки  

Для решения многих задач динамики, особенно в динамике системы, вместо метода 

интегрирования дифференциальных уравнений движения оказывается более удобным 

пользоваться так называемыми общими теоремами, являющимися следствиями основного 

закона динамики. 

Значение общих теорем состоит в том, что они устанавливают наглядные зависимости 

между основными динамическими характеристиками движения материальных тел и 
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открывают тем самым новые возможности исследования движений механических систем, 

широко применяемые в инженерной практике. Кроме того, общие теоремы позволяют изучать 

отдельные, практически важные стороны данного явления, не изучая явление в целом.  

Наконец, применение общих теорем избавляет от необходимости проделывать для каждой 

задачи те операции интегрирования, которые раз и навсегда производятся при выводе этих 

теорем; тем самым упрощается процесс решения. Сейчас мы рассмотрим, как выглядят эти 

теоремы для одной материальной точки. 

 

Количество движения точки 

Основными динамическими характеристиками движения точки являются количество 

движения и кинетическая энергия. 

Количеством движения точки называется векторная величина  m v


 равная 

произведению массы точки на вектор ее скорости. Направлен вектор т v


 так же, как и 

скорость точки, т. е. по касательной к ее траектории. 

Кинетической энергией (или живой силой) точки называется скалярная величина 

22mv , равная половине произведения массы точки на квадрат ее скорости. 

Необходимость введения двух динамических характеристик объясняется тем, что 

одной характеристикой нельзя охватить все особенности движения точки. 

Например, зная количество движения автомобиля (т.е. величину mvQ  ) а не 

величины m  и v  в отдельности) и действующую на него при торможении силу, можно 

определить, через сколько секунд автомобиль остановится, но по этим данным нельзя найти 

пройденный за время торможения путь. Наоборот, зная начальную кинетическую энергию 

автомобиля и тормозящую силу, можно определить тормозной путь, но по этим данным 

нельзя найти время торможения. 

 

Импульс силы 

Для характеристики действия, оказываемого на тело силой за некоторый промежуток 

времени, вводится понятие об импульсе силы. Введем сначала понятие об элементарном 

импульсе, т.е. об импульсе за бесконечно малый промежуток времени dt. Элементарным 

импульсом силы называйся векторная величина Sd


, равная произведению вектора силы F


 на 

элементарный промежуток времени dt  

dtFSd


 . 

Направлен элементарный импульс по линии действия силы. 

Импульс S


 любой силы F


 за конечный промежуток времени t1 вычисляется как 

интегральная сумма соответствующих элементарных импульсов: 


1

0

t

dtFS


. 

Следовательно, импульс силы за любой промежуток времени, 1t  равен определенному 

интегралу от элементарного импульса, взятому в пределах от 0 до 1t . 

В частном случае, если сила F


 и по модулю, и по направлению постоянна ( F


=const), 

будем иметь 1tFS


 . Причем, в этом случае и модуль 1FtS  . В общем случае модуль 

импульса может быть вычислен через его проекции. 

Проекции импульса силы на прямоугольные декартовы оси координат равны: 

dtFS
t

xx 
1

0  

dtFS
t

yy 
1

0  

dtFS
t

zz 
1

0 . 

Единицей измерения импульса в СИ является – сН1    
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Теорема об изменении количества движения точки 

Так как масса точки постоянна, а ее ускорение 
,

dt

d
a




 то уравнение, выражающее 

основной закон динамики, можно представить в виде 

 kF
dt

vmd )(

. 

Уравнение выражает одновременно теорему об изменении количества движения точки 

в дифференциальной форме: производная по времени
 
 от количества движения точки равна 

геометрической сумме действующих на точку сил. 

Проинтегрируем это уравнение. Пусть точка массы m, движущаяся под действием силы 

 kFR


 (рис. 3.11), имеет в момент t=0 скорость 0v


, а в момент t1-скорость 1v


.  

 
Рис. 3.11 

 

Умножим тогда обе части равенства на dt и возьмем от них определенные интегралы. 

При этом справа, где интегрирование идет по времени, пределами интегралов будут 0 и t1, а 

слева, где интегрируется скорость, пределами интеграла будут соответствующие значения 

скорости 0v  и 1v . Так как интеграл от )(mvd  равен mv , то в результате получим: 

  dtFvmvm K01 . 

Стоящие справа интегралы представляют собою импульсы действующих сил. Поэтому 

окончательно будем иметь:
 

 kSvmvm 01 . 

Уравнение выражает теорему об изменении количества движения точки в конечном 

виде: изменение количества движения точки за некоторый промежуток времени равно 

геометрической сумме импульсов всех действующих на точку сил за тот же промежуток 

времени (рис. 3.11). 

При решении задач вместо векторного уравнения часто пользуются уравнениями в 

проекциях.  















.

;

;

01

01

01

KZZZ

KYYY

KXXX

Smvmv

Smvmv

Smvmv

 
В случае прямолинейного движения, происходящего вдоль оси Ох теорема выражается 

первым из этих уравнений.  

 

Из двух основных динамических характеристик, величина vm


 является векторной. 

Иногда при изучении движения точки вместо изменения самого вектора vm


 оказывается 

необходимым рассматривать изменение его момента. Момент вектора vm


 относительно 

данного центра О или оси z обозначается )(0 vmm


 или )( vmmz


 и называется соответственно 

моментом количества движения или кинетическим моментом точки относительно этого 

центра (оси). Вычисляется момент вектора vm


 так же, как и момент силы. При этом вектор 
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vm


считается приложенным к движущейся точке. По модулю mvhvmm 


0 , где h - длина 

перпендикуляра, опущенного из центра О на направление вектора  vm


 (рис.11). 

Теорема моментов относительно центра. Найдем для материальной точки, 

движущейся под действием силы F (рис. 3.12), зависимость между моментами векторов vm


 и 

F


относительно какой-нибудь неподвижного центра О. В конце было показано, что 

FrFm


)(0 .      

Аналогично Vmrvmm


)(0 . 

При этом вектор )(0 Fm


направлен перпендикулярно плоскости, проходящей через 

центр О и вектор F


, а вектор )(0 vmm


 - перпендикулярно плоскости, проходящей через центр 

О и вектор vm


. 

 

 
Рис. 3.12 

 

Дифференцируя выражение )(0 vmm


 по времени, получаем: 

)()()()()( amrVmV
dt

Vd
mrVm

dt

rd
Vmr

dt

d


. 

Но 0 VmV , как векторное произведение двух параллельных векторов, a Fam


 . 

Следовательно, 

FrVmr
dt

d
 )(

 

или  
)()]([ 00 FmVmm

dt

d


. 

В результате мы доказали следующую теорему моментов относительно центра: 

производная по времени от момента количества движения точки, взятого относительно 

какого-нибудь неподвижного центра, равна моменту действующей на точку силы 

относительно того же центра. Аналогичная теорема имеет место для моментов вектора vm


 

силы F


относительно какой-нибудь оси z, в чем можно убедиться, проектируя обе части 

равенства 
)()]([ 00 FmVmm

dt

d


 на эту ось. Математическое выражение теоремы моментов 

относительно оси дается формулой 
)()]([ FmVmm

dt

d
ZZ 

. 
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Тема 3.3. Работа силы и момента силы, мощность. Теорема об изменении кинетической 

энергии 

 

Для характеристики действия, оказываемого силой на тело при некотором его 

перемещении,  вводится понятие о работе силы.  

 
Рис. 3.13 

 

При этом работа характеризует то действие силы, которым определяется изменение 

модуля скорости движущейся точки. 

Введём сначала понятие об элементарной работе силы на бесконечно малом 

перемещении ds. Элементарной работой силы F


 (рис. 3.13) называется скалярная величина: 

dsFdA  , 

где F  - проекция силы F


 на касательную к траектории, направленную в сторону 

перемещения точки, а ds -бесконечно малое перемещение точки, направленное вдоль этой 

касательной. 

Данное определение соответствует понятию о работе, как о характеристике того 

действия силы, которое приводит к изменению модуля скорости точки. В самом деле, если 

разложить силу F


 на составляющие F


и nF


, то изменять модуль скорости точки будет только 

составляющая F


, сообщающая точке касательное ускорение Составляющая же nF


 или 

изменяет направление вектора скорости v (сообщает точке нормальное ускорение), или, при 

несвободном движение изменяет давление на связь. На модуль скорости составляющая nF


 

влиять не будет, т.е., как говорят, сила nF


 «не будет производить работу». 

Замечая, что  cosFF  , получаем:  

cosFdsdA  .         (1) 

Таким образом, элементарная работа силы равна проекции силы на направление 

перемещения точки, умноженной на элементарное перемещение ds  или элементарная работа 

силы равна произведению модуля силы на элементарное перемещение ds  и на косинус угла 

между направлением силы и направлением перемещения.  

Если угол  острый, то работа положительна. В частности, при 0  элементарная 

работа FdsdA  . 

Если угол   тупой, то работа отрицательна. В частности, при 
0180  элементарная 

работа FdsdA  . 

Если угол 
090 , т.е. если сила направлена перпендикулярно перемещению, то 

элементарная работа силы равна нулю. 

Найдем аналитическое выражение элементарной работы. Для этого разложим силу F


 

на составляющие xF


, yF


, zF


 по направлениям координатных осей (рис. 3.14; сама сила F


 на 

чертеже не показана). 
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Рис. 3.14 

 

Элементарное перемещение dsMM '  слагается из перемещений dx , dy , dz  вдоль 

координатных осей, где x, y, z - координаты точки М. Тогда работу силы F


 на перемещении 

ds  можно вычислить как сумму работ её составляющих xF


, yF


, zF


 на перемещениях dx , dy , 

dz .  

Но на перемещении dx  совершает работу только составляющая xF


, причем её работа 

равна 
dxFx . Работа на перемещениях dy и dz  вычисляется аналогично. Окончательно 

находим: 
dzFdyFdxFdA zyx 

.    

Формула дает аналитическое выражение элементарной работы силы.  

Работа силы на любом конечном перемещении М0М1 вычисляется как интегральная 

сумма соответствующих элементарных работ и будет равна: 


1

0

)( 10

M

M

dsFMMA 

    
или 

 
1

0

)()( 10

M

M
zyx dzFdyFdxFMMA

. 

Следовательно, работа силы на любом перемещении М0М1 равна взятому вдоль этого 

перемещения интегралу от элементарной работы. Пределы интеграла соответствуют 

значениям переменных интегрирования в точках М0 и М1.  

 
Рис. 3.15 

 

Если величина F  постоянна ( F  = const), то и обозначая перемещение М0М1 через 1s  

получим: 1)( 10
sFA MM 

. 

Такой случай может иметь место, когда действующая сила постоянна по модулю и 

направлению (F= const), а точка, к которой приложена сила, движется прямолинейно (рис. 

3.15). В этом случае constFF   cos  и работа силы 
cos1)( 10

FsA MM 
 . 

Единицей измерения работы в системе СИ является джоуль (1 дж= 1 HM).  

 

Мощность  

Мощностью называется величина, определяющая работу, совершаемую силой в 

единицу времени. Если работа совершается равномерно, то мощность 
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t

A
W 

,  

где t - время, в течение которого произведена работа A. В общем случае 

VF
dt

dsF

dt

dA
W τ

τ 
.  

Следовательно, мощность равна произведению касательной составляющей силы на 

скорость движения. 

Единицей измерения мощности в системе СИ является ватт (1 вт=1 дж/сек). В 

технике за единицу мощности часто принимается 1 лошадиная сила, равная 75 кГм/сек или 

736 вт. 

Работу, произведенную машиной, можно измерять произведением ее мощности на 

время работы. Отсюда возникла употребительная в технике единица измерения работы 

киловатт-час (1 квт-ч = 3,6
610  дж   367100 кГм). 

Из равенства VFW   видно, что у двигателя, имеющего данную мощность W, сила 

тяги F  будет тем больше, чем меньше скорость движения V. Поэтому, например, на подъеме 

или на плохом участке дороги у автомобиля включают низшие передачи, позволяющие при 

полной мощности двигаться с меньшей скоростью и развивать большую силу тяги. 

 

Примеры вычисления работы  
Рассмотренные ниже примеры дают результаты, которыми можно непосредственно 

пользоваться при решении задач. 

1) Работа силы тяжести. Пусть точка М, на которую действует сила тяжести P


, 

перемещается из положения М0 (x0, у0, z0) в положение M1 (х1, у1, z1). Выберем оси координат 

так, чтобы ось Oz была направлена вертикально вверх (рис. 3.16).  

  
Рис. 3.16 

  

Тогда Рx=0, Рy=0, Pz= -Р. Подставляя эти значения и учитывая переменную 

интегрирования z: 

)()()( 1010

1

0

1

0

zzPdzPdzPMMA
Z

Z

M

M

 

.  

Если точка M0 выше М1, то hzz  10 , где h-величина вертикального перемещения 

точки;  

Если же точка M0 ниже точки M1 то hzzzz  )( 0110 .  

Окончательно получаем:  
PhA MM )( 10 . 

Следовательно, работа силы тяжести равна взятому со знаком плюс или минус 

произведению модуля силы на вертикальное перемещение точки ее приложения. Работа 

положительна, если начальная точка выше конечной и отрицательна, если начальная точка 

ниже конечной. Из полученного результата следует, что работа силы тяжести не зависит от 

вида той траектории, по которой перемещается точка ее приложения. 

Силы, обладающие таким свойством, называются потенциальными. 
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2) Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости 

и прикрепленный к свободному концу некоторой пружины (рис. 3.17а). Отметим на плоскости 

точкой О положение, занимаемое концом пружины, когда она не напряжена ( 0lAO   - длина 

ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз 

от равновесного положения О, удлинив пружину до величины l , то на груз будет действовать 

сила упругости пружины F, направленная к точке О.  

 

 
Рис. 3.17 

 

По закону Гука величина этой силы пропорциональна удлинению пружины 1lll  . 

Так как в нашем случае xl  , то по модулю 
xclcF 

. 

Коэффициент с называется коэффициентом жесткости пружины. В технике обычно 

измеряют величину с в H/см, полагая коэффициент с численно равным силе, которую надо 

приложить к пружине, чтобы растянуть ее на 1 см. 

Найдем работу, совершаемую силой упругости при перемещении груза из положения 

)( 00 xM  в положение )( 11 xM . Так как в данном случае cxFFx  ,  0 zy FF , то 

получим: 

)(
2

)()( 2
1

2
010

1

0

1

0

xx
c

xdxcdxcxMMA
x

x

M

M

 

. 

(Этот же результат можно получить по графику зависимости F от х (рис. 3.17б), 

вычисляя площадь   заштрихованной на чертеже трапеции и учитывая знак работы.) В 

полученной формуле 0x  представляет собою начальное удлинение пружины начl , а 1x  

конечное удлинение пружины конl . Следовательно, 

 22
10 )()(

2
)( коннач ll

с
MMA 

, 

т.е. работа силы упругости равна половине произведения коэффициента жесткости 

на разность квадратов начального и конечного удлинений (или сжатий) пружины. 

Работа будет положительной, когда коннач ll  , т.е. когда конец пружины 

перемещается к равновесному положению, и отрицательной, когда коннач ll  , т.е. конец 

пружины удаляется от равновесия положения. Можно доказать, что формула остается 

справедливой и в случае, когда перемещение точки М не является прямолинейным.  

Таким образом, оказывается, что работа силы F зависит только от значений начl  и 

конl  и не зависит от вида траектории точки М. Следовательно, сила упругости  также 

является потенциальной. 
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Рис. 3.18 

 

3) Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой 

поверхности (рис. 318) или кривой. Действующая на точку сила трения равна по модулю fN, 

где f-коэффициент трения, а N


-нормальная реакция поверхности. Направлена сила трения 

противоположно перемещению точки. Следовательно, Fтр=-fN и по формуле 


1

0

1

0

)( 10

M

M

M

M
тр fNdxdsFMMA

. 

Если величина силы трения постоянна, то sFMMA тр)( 10 , где
 
s-длина дуги кривой 

М0М1 по которой перемещается точка.  

Таким образом, работа силы трения при скольжении всегда отрицательна. Величина 

этой работы зависит от длины дуги М0М1. Следовательно, сила трения является силой 

непотенциальной. 

4) Работа силы, приложенной к телу, вращающемуся вокруг неподвижной оси. 

В этом случае (рис. 3.19) точка приложения силы F


 движется по окружности радиуса 

r. Элементарная работа, по (1), αcos FdsdA , где drds  .  

 
Рис. 3.19 

 

Поэтому  cos dFrdA .  

Но 
)(cos FMrFrF z


 

. 

Это нетрудно установить, разложив силу на три составляющие (рис. 3.19). (Моменты 

сил bF


 и nF


 равны нулю). Значит, 

dFMdA z  )(


         (2) 

В частности, если момент силы относительно оси const)( FM z


, работа силы при 

повороте тела на угол   равна   
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 )(FMA z



.         (3) 

Знак работы определяется знаками момента силы и угла поворота. Если они одинаковы, 

работа положительная. 

Из формулы (3) следует и правило определения работы пары сил. Если пара с 

моментом m расположена в плоскости перпендикулярной оси вращения тела, то ее работа при 

повороте тела на угол   

mA  .          (4) 

Если же пара сил действует в плоскости не перпендикулярной оси вращения, то ее надо 

заменить двумя парами. Одну расположить в плоскости перпендикулярной оси, другую – в 

плоскости параллельной оси. Моменты их определяются разложением вектора момента m


 по 

соответствующим направлениям: 21 mmm


 . Конечно, работу будет совершать только 

первая пара с моментом cos1 mm , где   – угол между вектором m


 и осью вращения z,  

 cos mA .         (5) 

 

Потенциальная энергия 

Часть пространства, в которой на помещенную туда материальную точку действует 

сила, зависящая от места положения точки, называется силовым полем.  

Причем, эта сила определяется с помощью силовой функции u = u(x, y, z). Если она не 

зависит от времени, то такое поле называется стационарным. Если во всех точках она 

одинакова, то поле – однородное.  

Если же проекции силы на декартовы оси есть частные производные от силовой 

функции по соответствующим координатам 

x

u
X






,  y

u
Y






,  z

u
Z






,         (6) 

то такое поле называется потенциальным.  

Вычислим работу силы потенциального поля при перемещении точки из положения М1 

в положение М2. (рис. 3.20). 

 
Рис. 3.20 

 

Элементарная работа, 

dudz
z

u
dy

y

u
dx

x

u
ZdzYdyXdxdA 
















  

Это есть полный дифференциал силовой функции. 

Работа на конечном перемещении  

 
2

1

,12

u

u

uuduA

          (7) 

где u2 и u1 – значения силовой функции в точках М2 и М1.  
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Следовательно, работа силы потенциального поля не зависит от траектории 

движения точки, а определяется лишь значениями силовой функции в начальном и конечном 

положениях точки. 

Естественно, если точка вернется в начальное положение, работа силы F


 будет равна 

нулю. Работа окажется равной нулю и при переходе в другую точку М3, если там значение 

силовой функции будет такое же, как и в начальном положении. 

Нетрудно догадаться, что точки с одинаковыми значениями силовой функции будут 

образовывать целую поверхность. И что силовое поле – это слоеное пространство, состоящее 

из таких поверхностей (рис. 3.21). Эти поверхности называются поверхностями уровня или 

эквипотенциальными поверхностями. Уравнения их: u(x, y, z)=C (C – постоянная, равная 

значению u в точках этой поверхности). А силовую функцию называют, соответственно, 

потенциалом поля.  

Конечно, эквипотенциальные поверхности не пересекаются. Иначе существовали бы 

точки поля с неопределенным потенциалом. 

Поскольку, при перемещении точки по эквипотенциальной поверхности работа силы 

F


 равна нулю, то вектор силы перпендикулярен поверхности. 

Выберем среди этих поверхностей какую-нибудь одну и назовем ее нулевой 

поверхностью (положим у нее u=u0).  

Работа, которую совершит сила F


при переходе точки из определенного места М на 

нулевую поверхность, называют потенциальной энергией точки в этом определенном месте 

М: 

uuAП  0 .         (8) 

Заметим, что потенциальная энергия в одной и той же точке поля зависит от выбора 

нулевой поверхности.  

По (8) силовая функция Пuu  0 . Поэтому проекции силы на декартовы оси, по (6), 

так как constu 0 ,  

 x
X






;   y
Y






;   z
Z






       (9) 

и вектор силы 

Пgrad






















 k

z
j

y
i

x
F



. 

Рассмотрим несколько потенциальных полей. 

1) Поле силы тяжести. 

Вблизи поверхности Земли сила тяжести во всех точках одинакова PF


 , равна весу 

тела. Значит, это силовое поле однородное. Так как при перемещении точки в горизонтальной 

плоскости работа силы равна нулю, то эквипотенциальными поверхностями будут 

горизонтальные плоскости (рис. 3.21), а уравнения их: u = z = C. 

 
Рис. 3.21 
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Если нулевой поверхностью назначить плоскость xOy, то потенциальная энергия точки 

в положении М будет равна работе силы тяжести: 

PhAП  . 

2) Поле упругой силы. 

При деформации упругого тела, например пружины, появляется сила. То есть около 

этого тела возникает силовое поле, силы которого пропорциональны деформации тела и 

направлены в сторону недеформированного состояния. У пружины – в точку М0, где 

находится конец недеформированной пружины (рис. 3.22). 

 
Рис. 3.22 

 

Если перемещать конец пружины так, чтобы длина ее не изменялась, то работа упругой 

силы F


 будет равна нулю. Значит, эквипотенциальными поверхностями являются 

сферические поверхности с центром в точке О.  

Назначим нулевой поверхностью сферу, проходящую через точку М0, через конец 

недеформированной пружины. Тогда потенциальная энергия пружины в положении М:  

2

2

1
схА 

.  

При таком выборе нулевой поверхности потенциальная энергия всегда будет 

положительной (П>0), и в растянутом, и в сжатом состоянии. 

 

Рассмотрим точку с массой т, перемещающуюся под действием приложенных к ней 

сил из положения M0 , где она имеет скорость 0v


, в положение М1 , где ее скорость равна 1v


. 

Для получения искомой зависимости обратимся к уравнению  kFam


, 

выражающему основной закон динамики. Проектируя обе части этого равенства на 

касательную M  к траектории точки М, направленную в сторону движения, получим: 

 kxFam


  
Стоящую слева величину касательного ускорения можно представить в виде 

V
ds

dV

dt

ds

ds

dV

dt

dV
a τ

. 

В результате будем иметь: 

 kxF
ds

dV
mV

 . 

Умножив обе части этого равенства на ds, внесем т под знак дифференциала. Тогда, 

замечая, что kk dAdsF    где kdA  - элементарная работа силы Fk получим выражение 

теоремы об изменении кинетической энергии в дифференциальной форме: 

 kdA
mV

d )
2

(
2

. 

Проинтегрировав теперь обе части этого равенства в пределах, соответствующих 

значениям переменных в точках M0 и M1, найдем окончательно: 
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 )(
22

10

2
0

2
1 MMA

mVmV

. 

Уравнение выражает теорему об изменении кинетической энергии точки в конечном 

виде: изменение кинетической энергии точки при некотором ее перемещении равно 

алгебраической сумме работ всех действующих на точку сил на том же перемещении. 

 

Тема 3.4. Принципы механики: принцип Даламбера для материальной точки 

(метод кинетостатики). Сила инерции, возможные перемещения, возможная работа 

 

 

 Важнейшим из принципов механики является принцип Даламбера. С принципом 

Даламбера тесно связан метод кинетостатики — способ решения задач динамики, в котором 

динамические уравнения записываются в форме уравнений равновесия. Метод кинетостатики 

широко применяется в таких общеинженерных дисциплинах, как сопротивление материалов, 

теория механизмов и машин, в других областях прикладной механики. Принцип Даламбера 

результативно используется и внутри самой теоретической механики, где с его помощью 

созданы эффективные способы решения задач динамики. 

Принцип Даламбера для материальной точки 

Пусть материальная точка массы m совершает несвободное движение относительно 

инерциальной системы координат Oxyz под действием активной силы  и реакции связи  

(рис.3.41). 

 

Рис. 3.41 

 Определим вектор численно равный произведению массы точки на 

ее ускорение и направленный противоположно вектору ускорения. Вектор имеет 

размерность силы и называется силой инерции (даламберовой) материальной точки. 

 Принцип Даламбера для материальной точки сводится к следующему утверждению: 

если к силам, действующим на материальную точку, условно 

присоединить силу инерции точки, то получим уравновешенную систему сил, т. е. 

  

 

Вспоминая из статики условие равновесия сходящихся сил, принцип Даламбера можем 

записать также в следующей форме: 

http://alnam.ru/book_tm2.php?id=49
http://sernam.ru/book_phis_t1.php?id=33
http://sernam.ru/lect_math1.php?id=14
http://sernam.ru/book_phis_t1.php?id=19
http://alnam.ru/book_tm2.php?id=49
http://scask.ru/book_s_phis1.php?id=35
http://alnam.ru/book_tm1.php?id=10
http://alnam.ru/book_tm2.php?id=49
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Легко видеть, что принцип Даламбера эквивалентен основному уравнению динамики, и 

наоборот, из основного уравнения динамики следует принцип Даламбера. Действительно, 

перенося в последнем равенстве вектор  в другую часть равенства и заменяя - 

на , получаем основное уравнение динамики. Наоборот, перенося в основном 

уравнении динамики член  в одну сторону с силами и используя обозначение -  = 

, получаем запись принципа Даламбера. 

 Принцип Даламбера для материальной точки, будучи вполне эквивалентным 

основному закону динамики, выражает этот закон в совершенно иной форме — в форме 

уравнения статики. Это дает возможность пользоваться при составлении уравнений динамики 

методами статики, что и называется методом кинетостатики. 

 Метод кинетостатики особенно удобен при решении первой задачи динамики. 

Сила инерции, возможные перемещения, возможная работа 

 Рассмотрим понятие о возможной (виртуальной) работе, то есть о работе, которую сила 

могла бы совершить на возможном перемещении. 

В отличие от реальной работы  на реальном перемещении ds, возможную 

работу обозначают  на возможном перемещении , 

 

где  - активные силы. 

Если это силы реакции , то возможная работа запишется 

 

При идеальных связях, используя уравнение получаем: 

 

Связи являются идеальными, если сумма работ сил реакций на возможны перемещениях 

равняется нулю. 

Если на точку  действует активные силы с равнодействующей  и реакции связей , то 

точка должна находиться в равновесии при условии: 

 

Следовательно, работы этих сил на возможных перемещениях равны и противоположны по 

знаку: 

для точки: 

http://sernam.ru/lect_math1.php?id=14
http://alnam.ru/book_tm2.php?id=49
http://sernam.ru/book_phis_t1.php?id=33
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для системы: 

 

но если связи идеальные, то выполняется  и 

 

 

Принцип возможных перемещений: 

Для равновесия механической системы с идеальными связями необходимо и достаточно, 

чтобы сумма элементарных работ всех активных сил на всех возможных перемещениях была 

равна нулю. 

В проекциях на оси координат уравнение  запишется: 

 

. 

4.3. Лабораторные работы 

Учебным планом не предусмотрено. 

4.4. Практические занятия 

 

№ 

п/п 

Номер 

раздела 

дисциплины 

Наименование тем практических занятий 
Объем  

(час.) 

Вид  

занятия в 

интерактивной, 

активной,  

инновационной 

формах,  

(час.) 

1 

1. 

Равновесие плоской системы сил. 0,3 - 

2 Равновесие составной конструкции. 0,3 - 

3 Момент силы относительно оси. 0,4 - 

4 

2. 

Кинематика точки. 0,5 - 

5 Поступательное и вращательное 

движения твердого тела. 
0,5 - 

6 Плоскопараллельное движение твердого 

тела. 
0,5 - 

7 Сложное движение точки. 0,5 - 

8 

3. 

Динамика материальной точки. 1 - 

9 Общие теоремы динамики. 1 - 

10 Принцип Даламбера. 1 - 

ИТОГО 6 - 
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4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная 

работа, РГР, реферат 

 

Для набора 2016-2017 гг.: 

Учебным планом не предусмотрено. 

Для набора 2018 г.: 

Контрольная работа 1. 

Тема: Определение реакций опор составной конструкции. 

Цель: Сформировать умения составлять уравнения равновесия плоской системы сил 

для определения реакций связей твердого тела.  

Содержание: определение реакций опор составной конструкции. 

 Основная тематика: Статика. 

Рекомендуемый объем: Контрольная работа выполняется на формате А4, 2-4 листа. 

Выдача задания, прием контрольной работы проводится в соответствии с календарным 

учебным графиком. 

 
Оценка Критерии оценки контрольной работы 

Отлично - контрольная работа выполнена полностью; 

- в логических рассуждениях и обосновании решения задачи нет 

пробелов и ошибок; 

- в решении нет математических ошибок (возможна одна неточность, 

описка, не являющаяся следствием незнания или непонимания 

учебного материала). 

Хорошо - контрольная работа выполнена полностью, но обоснования шагов 

решения недостаточны; 

- допущена одна ошибка или два- три недочёта при выводе формулы, 

в рисунках. 

удовлетворительно - выполнено не менее 2/3 всей работы; 

- допущены более одной ошибки или более двух- трёх недочётов при 

выводе формул в решении задач, при пояснениях в решении задачи, 

в рисунках. 

неудовлетворительно - число ошибок и недочётов превысило норму для оценки «3»; 

- правильно выполнено менее 2/3 всей работы; 

- работа выполнена не самостоятельно. 
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5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ 

КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ 

 

 

Компетенции 

№,  наименование 

разделов  дисциплины 

Кол-во 

часов 

Компетенци

и 
 

комп. 
tср, час 

Вид 

учебных 

занятий 

Оценка 

результатов 
ОПК 

 

3 

1 2 3 4 5 6 7 

1. Статика 32 + 1 32 
Лк, ПЗ,  

СР 
экзамен 

2.Кинематика 35 + 1 35 
Лк, ПЗ,  

СР 
экзамен 

3. Динамика 68 + 1 68 
Лк, ПЗ,  

СР 
экзамен 

всего часов 135 135 1 135   
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6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ 

САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ 

 

1. Гончарова Л.М. Теоретическая механика. Динамика материальной точки и 

механической системы : учебное пособие.-2-е изд., перераб. и доп. / Л.М. Гончарова, Г.М. 

Кулехова, В.В. Яковлев. - Братск : БрГУ, 2013. - 98 с.; 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамик

а%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf 

2. Семенова Л.Г. Теоретическая механика. Кинематика : учеб. пособие / Л.Г.Семенова. 

- Братск: БрГУ, 2007. - 93 с.; 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематик

а.Уч.%20пособие.2007.pdf 

3. Белокобыльский С.В. Теоретическая механика. Динамика. Сборник заданий для 

расчетно-графических работ: учеб.пособие/ С.В. Белокобыльский, Н.М.Захаров, В.А. 

Коронатов, В.А. Поскребышев. – Братск: ГОУ ВПО «БрГУ», 2009. – 186 с. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Ди

намика.Сборник%20заданий.2009.pdf 

4. Белокобыльский С.В. Теоретическая механика. Многоуровневые тестовые задания 

для самостоятельной работы и контроля знаний студентов: учебное пособие / С.В. 

Белокобыльский, Л.М. Гончарова [и др.]. - Братск: БрГУ, 2009. - 100 с. 

5. Семенова Л.Г. Теоретическая механика. Статика: учеб.пособие/ Л.Г.Семенова. - 

Братск: ГОУ ВПО «БрГУ», 2005. – 84 с. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.

пособие.2005.pdf 
 

 

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, 

НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ 

 

№ 

п/п 
Наименование издания 

Вид 

заня-

тия 
(Лк, ПЗ, 

СР) 

Количество  

экземпляров 

в библиоте-

ке, 

шт. 

Обеспечен-

ность,  

(экз./ чел.) 

1 2 3 4 5 

Основная литература    

1. Тарг С.М. Краткий курс теоретической механики: 

учеб. для вузов/ С.М.Тарг. – 19-е изд., стер. – М.: 

Высшая школа, 2009.– 416 с. 

Лк, 

ПЗ,  

СР 

199 1 

2. Молотников В.Я. Механика конструкций. 

Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – 

СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546 

Лк, 

ПЗ,  

СР 

ЭР 1 

3. Доронин, Ф. А. Теоретическая механика: Учебное 

пособие [Электронный ресурс] / Ф. А. Доронин. - 

1-е изд. - Санкт-Петербург: Лань, 2018. - 480 с. 

https://e.lanbook.com/book/101840 

Лк, 

ПЗ,  

СР, кр 

ЭР 1 

Дополнительная литература    

4. Сборник заданий для курсовых работ по ПЗ,  507 1 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
https://e.lanbook.com/book/101840
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теоретической механике: учеб. пос. для тех. вузов/ 

Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: 

Интеграл-Пресс, 2007. – 384 с. 

СР 

5. Бать М.И. Теоретическая механика в примерах и 

задачах: учебное пособие для вузов. В 3 т./ М.И. 

Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – 9-е изд., 

перераб.- М.: Наука, 1990. – Т.1: Статика и 

кинематика.- 670 с. 

СР 175 1 

6. Бать М.И. Теоретическая механика в примерах и 

задачах: учебное пособие для вузов. В 3 т./ М.И. 

Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – 8-е изд., 

перераб.- М.: Наука, 1990. – Т.2: Динамика.- 638 с. 

СР 163 1 

7. Мещерский И.В. Сборник задач по теоретической 

механике: учебное пособие для втузов/ И.В. 

Мещерский; под ред. Н.В. Бутенина. – 36-е изд., 

испр. – М.: Наука, 1986. – 447 с. 

СР 1025 1 

8. Диевский В.А. Теоретическая механика. Интернет-

тестирование базовых знаний: учебное пособие/ 

В.А. Диевский, А.В. Диевский. – СПб.: Лань, 2010. 

– 144 с. 

СР 22 0,3 

9. Максимов, А. Б. Теоретическая механика. Решение 

задач статики и кинематики: учебное пособие 

[Электронный ресурс] / А. Б. Максимов. - Санкт-

Петербург : Лань, 2018. - 208 с. 

https://e.lanbook.com/book/72990  

ПЗ,  

СР, кр 
ЭР 1 

10. Диевский, В. А. Теоретическая механика. Сборник 

заданий [Электронный ресурс] : учебное пособие / 

В. А. Диевский, И. А. Малышева. - 4-е изд., стер. – 

Санкт-Петербург : Лань, 2018. - 192 с. 

https://e.lanbook.com/book/98236  

ПЗ,  

СР, кр 
ЭР 1 

 

 

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-

ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» 

НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ 
 

1.Электронный каталог библиотеки БрГУ 

http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21

DBN=BOOK&S21CNR=&Z21ID=. 

2. Электронная библиотека БрГУ  

http://ecat.brstu.ru/catalog . 

3. Электронно-библиотечная система «Университетская библиотека online» 

http://biblioclub.ru . 

4. Электронно-библиотечная система «Издательство «Лань»  

http://e.lanbook.com . 

5. Информационная система "Единое окно доступа к образовательным ресурсам" 

http://window.edu.ru . 

6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru . 

7. Университетская информационная система РОССИЯ (УИС РОССИЯ) 

https://uisrussia.msu.ru/ . 

8. Национальная электронная библиотека НЭБ  

http://xn--90ax2c.xn--p1ai/how-to-search /. 
 

 

https://e.lanbook.com/book/72990
https://e.lanbook.com/book/98236
http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21DBN=BOOK&S21CNR=&Z21ID
http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21DBN=BOOK&S21CNR=&Z21ID
http://ecat.brstu.ru/catalog
http://biblioclub.ru/
http://e.lanbook.com/
http://window.edu.ru/
http://elibrary.ru/
https://uisrussia.msu.ru/
http://нэб.рф/how-to-search%20/
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9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ 

ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ 

 

Приступая к изучению данной дисциплины, обучающиеся должны ознакомиться с 

учебной программой, учебной, научной и методической литературой, имеющейся в 

библиотеке ФГБОУ ВО «БрГУ», получить в библиотеке рекомендованные учебники и 

учебно-методические пособия, завести новую тетрадь для конспектирования лекций и 

работы с первоисточниками. 

В ходе лекционных занятий вести конспектирование учебного материала. Обращать 

внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и 

процессов, научные выводы и практические рекомендации. 

 Желательно оставить в рабочих конспектах поля, на которых делать пометки из 

рекомендованной литературы, дополняющие материал прослушанной лекции, а также 

подчеркивающие особую важность тех или иных теоретических положений. Задавать 

преподавателю уточняющие вопросы с целью уяснения теоретических положений, 

разрешения спорных ситуаций. 

В ходе подготовки к практическим занятиям изучить основную литературу, 

ознакомиться с дополнительной литературой, при этом учесть рекомендации преподавателя 

и требования учебной программы. Дорабатывать свой конспект лекции, делая в нем 

соответствующие записи из литературы, рекомендованной преподавателем и 

предусмотренной учебной программой.  

В ходе практических занятий принимать активное участие в обсуждении учебных 

вопросов: выступать с докладами, рефератами, обзорами научных статей, касающихся 

содержания темы практического занятия. В ходе своего выступления использовать 

технические средства обучения, доску и мел. 

С целью более глубокого усвоения изучаемого материала задавать вопросы 

преподавателю. После подведения итогов практического занятия устранить недостатки, 

отмеченные преподавателем. 

При подготовке к экзамену повторять пройденный материал в строгом соответствии с 

учебной программой, примерным перечнем учебных вопросов, выносящихся на экзамен и 

содержащихся в данной программе. Использовать конспект лекций и литературу, 

рекомендованную преподавателем. Обратить особое внимание на темы учебных занятий, 

пропущенных студентом по разным причинам. При необходимости обратиться за 

консультацией и методической помощью к преподавателю. 

В учебном процессе выделяют два вида самостоятельной работы: 

- аудиторная; 

- внеаудиторная. 

Аудиторная работа по дисциплине выполняется на учебных занятиях под 

непосредственным руководством преподавателя и по его заданию. 

Внеаудиторная самостоятельная работа выполняется обучающимся по заданию 

преподавателя, но без его непосредственного участия. 

Содержание внеаудиторной самостоятельной работы определяется в соответствии с 

рекомендуемыми видами заданий согласно примерной и рабочей программ учебной 

дисциплины. 

Видами заданий для внеаудиторной самостоятельной работы являются: 

-  для овладения знаниями: чтение текста основной и дополнительной литературы, 

составление плана текста,  графическое изображение структуры текста, конспектирование 

текста, выписки из текста, работа со справочниками, учебно-исследовательская работа, 

использование аудио-  и видеозаписей, компьютерной техники и Интернета и др. 

-  для закрепления и систематизации знаний: работа с конспектом лекции,  обработка 

текста, повторная работа над учебным материалом (учебника, основной и дополнительной  

литературы, аудио и видеозаписей, составление плана, составление таблиц для 

систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей 

тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, 
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конспект-анализ и  др.), подготовка мультимедиа сообщений/докладов к выступлению  на 

семинаре (конференции), подготовка реферата, составление библиографии, тематических 

кроссвордов, тестирование и др. 

-  для формирования умений:   решение задач и упражнений по образцу, решение 

вариативных задач, выполнение чертежей, схем, выполнение расчетно-графических работ, 

проектирование и моделирование  разных  видов и  компонентов  профессиональной  

деятельности, опытно экспериментальная работа. Самостоятельная работа осуществляется 

индивидуально или группами студентов в зависимости от цели, объема, конкретной 

тематики самостоятельной работы, уровня сложности, уровня умений студентов. 

Контроль результатов внеаудиторной самостоятельной работы обучающихся может 

осуществляться в пределах времени, отведенного на обязательные учебные занятия по 

дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, может 

проходить в письменной, устной или смешанной форме. 

 

 

9.1. Методические указания для обучающихся по выполнению практических работ 

 

Практическое занятие № 1 

Равновесие плоской системы сил 

Цель работы: Научиться определять реакции опор твёрдого тела 

 

Задание: Определить реакции опор для того способа закрепления, при котором 

исследованные реакции  имеют наименьший модуль. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] cтр.8, 13-14. 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.

пособие.2005.pdf 

Семенова Л.Г. Теоретическая механика. Статика: учеб.пособие/ Л.Г. Семенова. - Братск: 

ГОУ ВПО «БрГУ», 2005. – 84 с. 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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1. Основные виды связи и их реакции. 

2. Уравнения равновесия плоской системы сил. 

3. Моменты сил и пар сил на плоскости и в пространстве. 

 

Практическое занятие № 2 

Равновесие составной конструкции 

Цель работы: Научиться определять реакции опор составной конструкции 

 

Задание: Определить реакцию опор, а также соединения для того способа сочленения 

(шарнир или скользящая заделка), при котором модуль опоры А наименьший. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 21-25. 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.

пособие.2005.pdf 

Семенова Л.Г. Теоретическая механика. Статика: учеб.пособие/ Л.Г. Семенова. - Братск: 

ГОУ ВПО «БрГУ», 2005. – 84 с. 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Внутренние усилия. Метод сечения. 

2. Распределённые и сосредоточенные силы. 

3. Теорема Вариньона. 

 

Практическое занятие № 3 

Момент силы относительно оси 

Цель работы: Научиться определять моменты сил относительно оси (определить главный 

вектор и главный момент заданной системы сил) 

 

Задание: Определить моменты сил относительно оси (определить главный вектор и главный 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546


 

 

85 

момент заданной системы сил). 

 

Порядок выполнения: Приводится в дополнительной литературе 

[1] стр. 42-44; 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.

пособие.2005.pdf 

Семенова Л.Г. Теоретическая механика. Статика: учеб.пособие/ Л.Г. Семенова. - Братск: 

ГОУ ВПО «БрГУ», 2005. – 84 с. 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Моменты сил и парсил на плоскости и в пространстве. 

2. Теорема Пуансо. Главный вектор и главный момент. 

3. Уравнения равновесия произвольной системы сил. 

 

Практическое занятие № 4 

Кинематика точки 

Цель работы: Научиться определять скорость и ускорение точки по заданным уравнениям её 

движения. 

 

Задание: По заданным уравнениям движениям точки установить вид ее траектории и для 

момента времени t=t1  (c) найти положение точки на траектории, ее скорость, полное, 

касательное и нормальное ускорение, а также радиус кривизны на траектории. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 65-67. 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теретическая%20механика.Статика.Уч.пособие.2005.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематик

а.Уч.%20пособие.2007.pdf 

Теоретическая механика. Кинематика : учеб. пособие / Л.Г.Семенова. - Братск: БрГУ, 2007. - 

93 с.; 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Определение траектории точки. Способы задания движения точки. 

2. Радиус кривизны траектории. 

3. Классификация движений точки по ускорениям. 

 

 

Практическое занятие № 5 

Поступательное и вращательное движение твёрдого тела 

Цель работы: Научиться определять скорости и ускорения точек твёрдого тела при 

поступательном и вращательном движении 

Задание:  Найти уравнение движения груза, а также скорости и ускорения груза и точки М в 

момент времени t=t1  при поступательном и вращательном движении. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 67-72; 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

 http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематик

а.Уч.%20пособие.2007.pdf 

Теоретическая механика. Кинематика : учеб. пособие / Л.Г.Семенова. - Братск: БрГУ, 2007. - 

93 с.; 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
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Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Число степеней свободы при поступательном движении твёрдого тела. 

2. Число степеней свободы при вращении твёрдого тела относительно неподвижной оси. 

3. Кинематические уравнения простейших движений твёрдого тела. 

 

 

Практическое занятие № 6 

Плоскопараллельное движение твёрдого тела 

Цель работы: Научиться делать кинематический анализ плоского механизма  

 

Задание: Найти для заданного положения механизма скорости и ускорения точек В и С, а 

также угловую скорость и угловое ускорение звена, которому эти точки принадлежат. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр.73-80; 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематик

а.Уч.%20пособие.2007.pdf 

Теоретическая механика. Кинематика : учеб. пособие / Л.Г.Семенова. - Братск: БрГУ, 2007. - 

93 с.; 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

http://e.lanbook.com/books/element.php?pl1_id=4546
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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Контрольные вопросы для самопроверки 

1. Мгновенный центр скоростей.  

2. Построение планов скоростей и ускорений точек при плоском движении твёрдого тела. 

3. Теорема о проекциях скоростей двух точек на линию, соединяющую эти точки. 

 

Практическое занятие № 7 

Сложное движение точки 

Цель работы: Научиться определять абсолютную скорость и абсолютное ускорение точки 

 

Задание: Точка М движется относительно тела D по заданным уравнениям относительного 

движения точки М и движения тела D определить для момента времени t=t1   абсолютную 

скорость и абсолютное ускорение точки М. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 104, 109-111; 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематик

а.Уч.%20пособие.2007.pdf 

Теоретическая механика. Кинематика : учеб. пособие / Л.Г.Семенова. - Братск: БрГУ, 2007. - 

93 с.; 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Теорема о сложении скоростей. 

2. Теорема Кориолиса. 

3. Ускорение Кориолиса. 

Практическое занятие № 8 

Динамика материальной точки 

Цель работы: Научиться интегрировать дифференциальные уравнения движения 

материальной точки, находящейся под действием постоянных сил. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Семенова%20Л.Г.Теоретическая%20механика.Кинематика.Уч.%20пособие.2007.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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Задание:  Тело движется из точки А по участку АВ (длиной l) наклонной плоскости, 

составляющей угол  с горизонтом, в течение  с. Его начальная скорость А. Коэффициент 

трения скольжения тела по плоскости равен f. Определить f и c. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 133-136. 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Ди

намика.Сборник%20заданий.2009.pdf 

Белокобыльский С.В. Теоретическая механика. Динамика. Сборник заданий для расчетно-

графических работ: учеб.пособие/ С.В. Белокобыльский, Н.М. Захаров, В.А. Коронатов, В.А. 

Поскребышев. – Братск: ГОУ ВПО «БрГУ», 2009. – 186 с. 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Прямая и обратная задачи динамики.  

2. Методы решения дифференциальных уравнений динамики. 

3. Движение точки под действием переменных сил. 

 

 

Практическое занятие № 9 

Общие теоремы динамики 

Цель работы: Научиться применять теорему о движении центра масс к исследованию 

движения механической системы. 

Задание: Тела 1 и 2 движутся по отношению к телу 3 с помощью механизмов, установленных 

на этом теле (силы, приводящие в движение механизмы, являются внутренними силами 

данной механической системы).  Тело 3 находится на горизонтальной плоскости. 

Предполагаем горизонтальную плоскость гладкой, определить зависимость между 

перемещением s3=s3(t) тела 3 и относительным перемещением s1r=s1r(t) тела 1 (по отношению 

к телу 3), если механическая система в начале рассматриваемого движения находилась в 

состоянии покоя; определить также зависимость горизонтальной составляющей реакции 

одного из упоров, которые удерживали бы тело 3 от перемещения, от относительного 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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перемещения  s1=s1(t) тела 1. 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 179-184. 

 

Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамик

а%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf 

Теоретическая механика. Динамика материальной точки и механической системы: учебное 

пособие.-2-е изд., перераб. и доп. / Л.М. Гончарова, Г.М. Кулехова, В.В. Яковлев. - Братск: 

БрГУ, 2013. - 98 с. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Ди

намика.Сборник%20заданий.2009.pdf 

Белокобыльский С.В. Теоретическая механика. Динамика. Сборник заданий для расчетно-

графических работ: учеб.пособие/ С.В. Белокобыльский, Н.М. Захаров, В.А. Коронатов, В.А. 

Поскребышев. – Братск: ГОУ ВПО «БрГУ», 2009. – 186 с. 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

Контрольные вопросы для самопроверки 

1. Теорема о движении центра масс механической системы. 

2. Определение понятия механической системы. 

3. Свойства внутренних сил механической системы. 

 

 

Практическое занятие № 10 

Принцип Даламбера 

Цель работы: Научиться применять принцип Даламбера к определению реакций связей. 

 

Задание:  Определить реакции внешних связей механической системы (в произвольный 

момент времени). 

 

Порядок выполнения: 

Приводится в дополнительной литературе [1] стр. 266, 270-271. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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Форма отчетности: 

Отчет оформляется в рабочей тетради и содержит все необходимые расчеты и выводы по 

соответствующей теме. 

 

Задания для самостоятельной работы: 

1. Ознакомиться с текстом лекций. 

2. Ответить на контрольные вопросы для самопроверки. 

 

Рекомендации по выполнению заданий и подготовке к практическому занятию  

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамик

а%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf 

Теоретическая механика. Динамика материальной точки и механической системы: учебное 

пособие.-2-е изд., перераб. и доп. / Л.М. Гончарова, Г.М. Кулехова, В.В. Яковлев. - Братск: 

БрГУ, 2013. - 98 с. 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Ди

намика.Сборник%20заданий.2009.pdf 

Белокобыльский С.В. Теоретическая механика. Динамика. Сборник заданий для расчетно-

графических работ: учеб.пособие/ С.В. Белокобыльский, Н.М. Захаров, В.А. Коронатов, В.А. 

Поскребышев. – Братск: ГОУ ВПО «БрГУ», 2009. – 186 с. 

 

Основная литература 

 

1. Тарг С.М. Краткий курс теоретической механики: учеб. для вузов/ С.М. Тарг. – 19-е изд., 

стер. – М.: Высшая школа, 2009.– 416 с. 

2. Молотников В.Я. Механика конструкций. Теоретическая механика. Сопротивление 

материалов: учебное пособие/ В.Я. Молотников. – СПб.: Лань, 2012. – 608. 

http://e.lanbook.com/books/element.php?pl1_id=4546  

Дополнительная литература 

1. Сборник заданий для курсовых работ по теоретической механике: учеб. пос. для тех. 

вузов/ Под ред. А.А. Яблонского. – 16-е изд., стер. – М.: Интеграл-Пресс, 2007. – 384 с.  

 

Контрольные вопросы для самопроверки 

1. Силы инерции и моменты сил инерции. 

2. Определение реакций опор вращающегося твёрдого тела. 

3. Балансировка роторов. 

 

9.2. Методические указания по выполнению контрольной работы 

 

В процессе изучения теоретической механики обучающийся должен выполнить 

контрольную работу. Решение задач в контрольной работе является проверкой степени 

усвоения обучающимся теоретического курса. Перед выполнением контрольной работы 

обучающемуся необходимо внимательно ознакомиться с примерами решениями задач по 

данной контрольной работе,  уравнениями и формулами, а также со справочным материалом, 

приведенным в конце методических указаний.  Выбор задач производится по таблице 

вариантов, приведенной в методических указаниях (номером варианта является последняя 

цифра в номере зачётной книжки).  

 

 

 

 

 

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Гончарова%20Л.М.Теоретическая%20механика.Динамика%20материальной%20точки%20и%20механической%20системы.Уч.пособие.2013.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-методические%20пособия/Техника/Белокобыльский%20С.В.Теоретическая%20механика.Динамика.Сборник%20заданий.2009.pdf
http://e.lanbook.com/books/element.php?pl1_id=4546
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10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ 

ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ 

 

Microsoft Imagine Premium: Microsoft Windows Professional 7;  

Microsoft Office 2007 Russian Academic OPEN No Level;  

Антивирусное программное  обеспечение Kaspersky Security;  

Adobe Reader.  

 

 

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ 

ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ 

 

 

Вид 

занятия 
Наименование 

аудитории 
Перечень основного оборудования № ЛР или  ПЗ 

1 2 3 4 

Лк Специализированная 

мультимедийная 

аудитория по 

теоретической 

механике  

Интерактивная доска Promethean, проектор 

мультимедийный CASIO XJ-UT310WN, 

Монитор LG L1753S-SF, Системный блок Gel 

D315-2,26, учебная мебель 

- 

ПЗ Лаборатория 

сопротивления 

материалов  

 

Разрывная электромеханическая машина 

РЭМ-100, Установка для изучения системы 

плоских сходящихся сил ТМт  01, Установка 

для изучения плоской системы произвольно 

расположенных сил ТМт  02; Модель 

«Естественный трёхгранник» ТМк  01М, 

модель «Эллипсограф» ТМк   03М, Модель для 

демонстрации мгновенной оси вращений ТМк  

06М, учебная мебель 

№ 1-10 

СР Читальный зал №1 

  

Оборудование 10- 

ПК i5-2500/H67/4Gb (монитор TFT19 

Samsung); 

принтер HP LaserJet P2055D, учебная мебель 

- 
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Приложение  1 
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ  

ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ 
 

1. Описание фонда оценочных средств (паспорт) 

 

№ 

компе-

тенци

и 

Элемент 

компетенции 
Раздел Тема ФОС 

ОПК-3 

 

 

 

 

 

 

 

Готовность 

применять 

систему 

фундаментальн

ых знаний 

(математически

х, 

естественнонау

чных, 

инженерных и 

экономических) 

для 

идентификации 

формулировани

я и решения 

технических и 

технологически

х проблем 

эксплуатации 

транспортно-

технологически

х машин и 

комплексов. 

 

 

 

1. Статика 

 

 

 

 

1.1 Свободные и несвободные     

тела. Связи и их реакции.  

1.2 Момент силы относительно 

точки и оси. Главный вектор и 

главный момент системы сил. 

1.3  Условия и уравнения 

равновесия систем сил. Пара сил. 

Система сочлененных тел. Расчет 

ферм. 

1.4. Центр параллельных сил. 

Центр тяжести тела. Методы 

определения положения центра 

тяжести. 

Экзаменацион

ные вопросы 

1.1- 1.7  

2. Кинематика 

 

 

 

 

 

 

 

 

 

2.1 Кинематика точки. Скорость и 

ускорение точки при 

координатном и естественном 

способах задания движения. 

2.2 Поступательное и 

вращательное движения твердого 

тела, уравнения движения, 

скорость и ускорение точек тела. 

2.3 Сложное движение точки: 

абсолютное, относительное и 

переносное движения точки, 

теорема о сложении скоростей и 

ускорений точки, ускорение 

Кориолиса. 

2.4 Плоскопараллельное движение 

твердого тела: уравнения 

движения, мгновенный центр 

скоростей (м.ц.с.) и определение 

скоростей точек тела по м.ц.с. 

Экзаменацион

ные вопросы 

2.1 - 2.5  
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3. Динамика 

 

 

 

 

 

3.1 Динамика материальной 

точки, две основные задачи 

динамики материальной точки. 

3.2 Механическая система, 

внешние и внутренние силы, 

свойства внутренних сил, момент 

инерции, радиус инерции, теорема 

о моментах инерции относительно 

параллельных осей. 

3.3 Общие теоремы динамики: 

количество движения, теорема об 

изменении количества движения. 

3.4 Общие теоремы динамики: 

кинетический момент, теорема об 

изменении кинетического 

момента. 

3.5 Работа силы и момента 

силы, мощность. 

3.6 Теорема об изменении 

кинетической энергии. 

Принцип механики: принцип 

Даламбера для материальной 

точки (метод кинетостатики). 

Сила инерции, возможные 

перемещения, возможная работа. 

Экзаменацион

ные вопросы 

3.1 – 3.11  

 

 

2. Экзаменационные вопросы 

 

№ 

п/п 

Компетенции 
ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ 

№  и 

наименование  

раздела Код  Определение 

1 2 3 4 5 

1. ОПК-3 

 

 

 

 

Готовность 

применять систему 

фундаментальных 

знаний 

(математических, 

естественнонаучных, 

инженерных и 

экономических) для 

идентификации 

формулирования и 

решения 

технических и 

технологических 

проблем 

эксплуатации 

транспортно-

1.1. Основные понятия статики. 

1.2. Системы сил. 

1.3. Связи и их реакции. 

1.4. Момент силы.   

1.5.Пара сил. 

1.6. Теорема Вариньона о моменте 

равнодействующей силы. 

1.7. Уравнения равновесия плоской 

системы сил. 

1. Статика 

2.1. Кинематика точки. 

2.2. Скорость и ускорение точки при 

координатном и естественном 

способах задания движения. 

2.3. Поступательное и вращательное 

движения твердого тела, уравнения 

движения, скорость и ускорение точек 

тела. 

2.4. Сложное движение точки: 

абсолютное, относительное и 

переносное движения точки, теорема о 

2. Кинематика 
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технологических 

машин и 

комплексов. 

 

 

сложении скоростей и ускорений 

точки, ускорение Кориолиса. 

2.5. Плоскопараллельное движение 

твердого тела: уравнения движения, 

мгновенный центр скоростей (м.ц.с.) и 

определение скоростей точек тела по 

м.ц.с.  

3.1. Динамика материальной точки, две          

основные задачи динамики 

материальной точки. 

3.2. Механическая система, внешние и 

внутренние силы, свойства внутренних 

сил, момент инерции, радиус инерции, 

теорема о моментах инерции 

относительно параллельных осей. 

3.3. Общие теоремы динамики. 

3.4. Количество движения, теорема об 

изменении количества движения. 

3.5. Кинетический момент, теорема об 

изменении кинетического момента. 

3.6. Работа силы и момента силы, 

мощность.  

3.7. Теорема об изменении 

кинетической энергии. 

3.8. Принцип Даламбера для 

материальной точки (метод 

кинетостатики). 

3.9.Сила инерции. 

3.10. Возможные перемещения, 

возможная работа. 

3.11. Принцип возможных 

перемещений. 

3. Динамика 
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3. Описание показателей и критериев оценивания компетенций  

 

Показатели Оценка Критерии 

Знать  

ОПК-3: 

- основные 

подходы к 

формализации и 

моделированию 

движения и 

равновесия 

материальных 

тел; постановку и 

методы решения 

задач о движении 

и равновесии 

механических 

систем; 

 

Уметь 

ОПК-3:  

- применять 

знания, 

полученные по 

теоретической 

механике при 

изучении 

дисциплин 

профессионально

го цикла; 

 

Владеть 

ОПК-3: 

- основными 

современными 

методами 

постановки, 

исследования и 

решения задач 

механики. 

отлично 

 

«Отлично» заслуживает обучающийся, 

который знает основные подходы к 

формализации и моделированию движения 

и равновесия материальных тел; постановку 

и методы решения задач о движении и 

равновесии механических систем, умеет 

применять знания, полученные по 

теоретической механике при изучении 

дисциплин профессионального цикла, 

владеет основными современными 

методами постановки, исследования и 

решения задач механики. 

хорошо 

 

«Хорошо» заслуживает обучающийся, 

который знает основные подходы к 

формализации и моделированию движения и 

равновесия материальных тел; постановку и 

методы решения задач о движении и 

равновесии механических систем, умеет 

применять знания, полученные по 

теоретической механике при изучении 

дисциплин профессионального цикла, 

владеет основными современными методами 

постановки, исследования и решения задач 

механики. Но обучающийся допустил не более 

двух-трех  недочётов и может исправить их 

самостоятельно или с небольшой помощью 

преподавателя. 

удовлетворительно 

 

«Удовлетворительно» заслуживает 

обучающийся, у которого в ответе имеются 

отдельные пробелы в усвоении полученных 

теоретических и практических материалов 

по дисциплине. Решение задач с 

допустимыми ошибками. Качество 

выполнения работы должно быть 

удовлетворительным. Грубые погрешности, 

которые студент допустил в  работе над 

заданиями, должны быть исправлены.  

неудовлетворительно 

«Неудовлетворительно» заслуживает 

обучающийся, который не знает основные 

подходы к формализации и моделированию 

движения и равновесия материальных тел; 

постановку и методы решения задач о 

движении и равновесии механических 

систем, не умеет применять знания, 

полученные по теоретической механике при 

изучении дисциплин профессионального 

цикла, не владеет основными 

современными методами постановки, 

исследования и решения задач. 
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4. Методические материалы, определяющие процедуры оценивания знаний, 

умений, навыков и опыта деятельности 
 

Дисциплина Теоретическая механика направлена на выявление естественнонаучной 

сущности проблем, возникающих в ходе профессиональной деятельности с привлечением 

для их решения соответствующего физико-математического аппарата; на получение 

теоретических знаний и практических навыков для их дальнейшего использования в 

практической деятельности. 

Изучение дисциплины Теоретическая механика предусматривает: 

 лекции; 

 практические занятия; 

 контрольную работу; 

 экзамен. 

В ходе освоения раздела 1 Статика: студенты должны уяснить: понятие силы и его 

момента относительно центра и оси; типовые опоры и их реакции; составление уравнений 

равновесия. 

В ходе освоения раздела 2 Кинематика: студенты должны уяснить понятия скорость, 

ускорение, угловая скорость и угловое ускорение - как векторные величины; поступательное, 

вращательное и плоскопараллельное движение твердого тела. 

В ходе освоения раздела 3 Динамика: студенты должны уяснить законы Ньютона; 

решение II основной задачи динамики точки; основные теоремы динамики точки и системы. 

Необходимо овладеть навыками и умениями применения изученных методов для 

проектно-конструкторского применения и реализации тех или иных проектов в конкретных 

ситуациях. 

В процессе изучения дисциплины рекомендуется на первом этапе обратить внимание 

на особенности научной терминологии по теоретической механике. 

Овладение ключевыми понятиями: является понятие силы и момента силы, 

относительно центра и оси; механическая система, внешние и внутренние силы системы; 

скорость, ускорение, угловая скорость и угловое ускорение как векторные величины; II закон 

Ньютона, центр масс, количество движения и момент количества движения, кинетическая 

энергия, работа силы для точки и системы. 

При подготовке к экзамену рекомендуется особое внимание уделить следующим 

вопросам: формулировке основных положений теории и теорем; умение применять теорию 

для решения типовых задач.  

В процессе проведения практических занятий происходит закрепление знаний, 

формирование умений и навыков реализации представления о решении задач по разделам 

Статика, Кинематика, Динамика. 

Самостоятельную работу необходимо начинать с ознакомления теоретической 

учебно-научной информацией в учебной литературе.  

В процессе консультации с преподавателем разобраться с наиболее сложными 

вопросами теории и методикой решения типовых задач. 

Работа с литературой является важнейшим элементом в получении знаний по 

дисциплине. Прежде всего, необходимо воспользоваться списком рекомендуемой по данной 

дисциплине литературой. Дополнительные сведения по изучаемым темам можно найти в 

периодической печати и Интернете. Предусмотрено проведение аудиторных занятий в 

сочетании с внеаудиторной работой. 
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Приложение  2 

 

 

АННОТАЦИЯ  

рабочей программы дисциплины 

Теоретическая механика 
 

 

1. Цель и задачи дисциплины 

 

Целью изучения дисциплины является: дать обучающемуся необходимый объем 

фундаментальных знаний в области механического взаимодействия равновесия и движения 

материальных тел, на базе которых строится большинство специальных дисциплин 

инженерно-технического образования. 

 

Задачей изучения дисциплины является:  формирование у обучающегося системы 

инженерно-конструкторских знаний, позволяющих успешно решать научно-технические 

проблемы, возникающие в процессе профессиональной деятельности. 

 

2. Структура дисциплины  

 

2.1. Распределение трудоемкости по отдельным видам учебных занятий, включая 

самостоятельную работу: лекции 6 часов, практические занятия 6 часов, самостоятельная 

работа 123 часа. 

 

Общая трудоемкость дисциплины  составляет  144 часа, 4 зачетных единицы. 

 

2.2. Основные разделы дисциплины: 

1 – Статика. 

2 – Кинематика. 

3 – Динамика. 

 

3. Планируемые результаты обучения (перечень компетенций)  
 

Процесс изучения дисциплины направлен на формирование следующих компетенций:  

ОПК-3 - готовность применять систему фундаментальных знаний (математических, 

естественнонаучных, инженерных и экономических) для идентификации формулирования и 

решения технических и технологических проблем эксплуатации транспортно-

технологических машин и комплексов. 

 

 

4.   Вид промежуточной аттестации:  экзамен. 
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Приложение  3 

Протокол о дополнениях и изменениях в рабочей программе 

на   20___-20___  учебный год 

 

1. В рабочую программу по дисциплине вносятся следующие дополнения: 

________________________________________________________________________________ 

________________________________________________________________________________ 

2. В рабочую программу по дисциплине вносятся следующие изменения: 

 

 

 

 

 

Протокол  заседания кафедры №____ от «___» __________ 20 ____ г.,  
                               (разработчик) 

 

Заведующий кафедрой  _____________________    ______________________ 

(подпись)            (Ф.И.О.) 
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Программа составлена в соответствии с федеральным государственным образовательным 

стандартом высшего образования по направлению подготовки 23.03.03 Эксплуатация 

транспортно-технологических машин и комплексов от «14» декабря 2015 г № 1470 

 

для набора 2016 года: и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения 

от «25» февраля 2016 г. № 128; 

для набора 2017 года: и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения 

от «06» марта 2017 г. № 125; 

 

 

Программу составил: 

 

Коронатов В.А., доцент, к.ф.-м.н.                                                      __________________ 

 

Яковлев В.В., доцент, к.т.н.                                                                __________________ 
 

 

Рабочая программа рассмотрена и утверждена на заседании кафедры ММиГ 

от «14» декабря 2018 г., протокол № 3 

 

Заведующий кафедрой ММиГ     ____________ Л.П. Григоревская 
 

СОГЛАСОВАНО: 

 

И.о. заведующего выпускающей кафедрой МиТ  ____________ Е.А. Слепенко 

 

 

Директор библиотеки      ____________ Т.Ф. Сотник 

 

 

Рабочая программа одобрена методической комиссией факультета МФ 

от «14» декабря 2018 г., протокол № 4 

 

Председатель методической комиссии факультета МФ ___________ Г.Н. Плеханов 

 

 

СОГЛАСОВАНО: 

 

Начальник учебно-методического управления   ____________ Г.П. Нежевец 

 

 

Регистрационный № _____ 

 (методический отдел) 

 


